第1回日本デジタル医学会 年次学術大会 抄録集

2025年10月18日(土)-19日(日)

日本デジタル医学会事務局

jsdmhc2025@jsdmhc.jp

大会長挨拶

このたび、2025 年 10 月 18 日(土)~19 日(日)の 2 日間、東京都港区にある国際医療福祉大学東京赤坂キャンパスにて、第1回デジタル医学会 年次学術大会を開催するにあたり、ご挨拶申し上げます。

日本デジタル医学会は、前身である「日本コンピュータサイエンス学会」を含めると昨年創立 30 周年を迎え、社会状況の変化に対応するために「日本デジタル医学会」と名称を変更しました。本学術大会は、デジタル医学会として第 1 回目の開催となります。これまで「IT ヘルスケア学会」として積み重ねてきた知見を礎に、新たな時代に即したデジタル医学の発展と実践の場を広げることを目的に、「デジタルで変わる医療・ヘルスケア、広がる未来」をテーマに、本大会を開催する運びとなりました。

医療とデジタル技術の融合が加速度的に進む中、AIによる診断支援や治療計画の最適化、ビッグデータを活用した個別化医療、遠隔医療の発展による地域医療の充実など、私たちが直面する課題とその解決策について、第一線の専門家が集い、議論を交わします。また、最新のデジタル医療機器やウェアラブル技術の進化、医療現場における ICT の応用事例など、未来の医療の方向性を具体的に探る機会ともなります。

本大会は、研究者や医療従事者のみならず、技術開発者や企業、政策立案者など、幅広い分野の方々が一堂に会し、デジタル 医療の未来について共に考える場です。デジタルヘルスや医療 DX がどのように社会に貢献し、医療提供の現場に変革をもたら すのか、具体的な事例と共に深く掘り下げていきます。

さらに、医療の枠を超えた多様な視点が集結することで、より包括的な議論が展開され、新たなコラボレーションの機会が生まれることを期待しています。技術革新のスピードが加速する今こそ、私たちが協力し合い、未来の医療を創造する時です。

本大会を通じて、デジタル医学の可能性を最大限に引き出し、より良い医療環境を実現するために、多くの皆様のご参加を心よりお待ちしております。

第1回 日本デジタル医学会 年次学術大会 大会長 医療法人社団嗣業の会 理事長 こどもとおとなのクリニック パウルーム 院長 黒木春郎

プログラム委員長挨拶

このたび、日本デジタル医学会 2025 のプログラム委員長を拝命いたしました、井上祥と申します。日頃より本学会の活動にご理解とご支援を賜り、心より御礼申し上げます。本学会は、これまで「IT ヘルスケア学会」として、医療とテクノロジーの接点を探求してまいりました。諸先輩方が築いてこられたその歴史と成果に深く敬意を表するとともに、2025 年より、時代の要請に応えるかたちで「日本デジタル医学会」へと名称を改め、新たな一歩を踏み出します。本大会はその第一回目の記念すべき開催であり、私のような若輩者がプログラム委員長という大役を仰せつかりましたこと、身に余る光栄であると同時に、責任の重さを深く実感しております。

私はこれまで、医師としての経験に加え、大学、医学教育、起業、上場企業、さらに自治体や公的機関の委員など、医療を取り巻くさまざまな現場に携わってまいりました。現代の医療は、医療者のみで完結するものではなく、多職種・多分野との連携が求められる時代です。そして、そのハブとなり得るものこそが「デジタル」の力であると強く感じています。

2025 年 10 月 18 日・19 日、国際医療福祉大学 赤坂キャンパスにて開催される本大会では、「誰のためのデジタル医療か?」 という本質的な問いを出発点に、以下のような方針でプログラムを構成してまいります:

- 医療者、患者、市民、行政、企業、エンジニアなど、多様な立場が対話し、共創できる場の創出
- 若手医師、医学生、多職種の皆さまが主体的に発信・参加できる次世代育成の機会の強化
- 現場の課題を出発点とした、実践知とテクノロジーの融合
- 地域医療、慢性疾患、在宅ケア、公衆衛生など、「医療の現場力」とデジタルの交差点の可視化

改称後初となる本大会を、過去と未来をつなぐ架け橋として、そして"医療と社会をつなぐデジタルの祭典"として、多くの皆さまと 共に創り上げてまいりたいと考えております。皆さまのご参加とご協力を、心よりお願い申し上げます。

第1回 日本デジタル医学会 2025 プログラム委員長

横浜市立大学共創イノベーションセンター、株式会社 GENOVA、京都大学 井上 祥

FASTER, SMALLER, SMARTER: Syndromic Testing for POCT

POCT向けの網羅的な迅速遺伝子検査 BioFire®SpotFire®

15項目の 呼吸器感染病原体を 約15分で測定

VIRUSES

新型コロナウイルス(SARS-CoV-2)

季節性コロナウイルス

インフルエンザA

インフルエンザA/H1=2009

インフルエンザA/H3

インフルエンザB

RSウイルス

アデノウイルス

ヒトメタニューモウイルス

ヒトライノウイルス/エンテロウイルス

バラインフルエンザウイルス

BACTERIA

Bordetella pertussis

(百日咳菌)

Bordetella parapertussis

(バラ百日咳菌)

Chlamydia pneumoniae

(クラミジア・ニューモニエ)

Mycoplasma pneumoniae (マイコブラズマ・ニューモニエ)

PIONEERING DIAGNOSTICS

製造販売元

ビオメリュー・ジャパン株式会社

臨床事業部 世業本部 03-6731-9000 〒107-0052 東京都港区赤坂二丁目17番7号赤坂道池タワー2階 www.biomerieux.co.jp ●販売名: BioFire SpotFire Rパネル 体外診断用核薬品製造販売承認番号: 30500EZX00039000

●販売名: BioFire SpotFireシステム医療機器製造販売届出番号: 1383X00212000022

医療・医薬業界の半歩先を照らす

先の予測が難しい今、ビジネスを成功に導くには 質の高い情報を効率よく収集するだけではなく、 "自分事"に落とし込み、またチームで共有・活用することが不可欠です。 ミクスは業界情報を網羅的に収集できます。

【大会長講演】10月18日(土) 9:00-9:50 (第1会場)

新しい技術は、私達をどこへ連れていくのか

医療・医学に新しい技術が何をもたらすのか、4つの視点からの問題提起を試みてみます。ひとつはオンライン診療である。演者は2016 年からオンライン診療を導入し、医師少数地域と都内港区で医療を展開した。その成績と現在の課題を考える。またメンタルヘルス系の診療から人間に認知の多様性を考える機会があった。VR や AII によるコミュニュケーションの拡大を考えてみたい。医学の方向として、統合的な医学が勃興するのであろう。システムズバイオロジーと東洋医学は親和性があり、生体を全体として診る医学の可能性を考える。最後に演者のクリニックで実際に使用してみた要約生成 AI やペットロボットの使用経験を紹介し、今後の課題につなげてみたい。

座長:磯部 陽(国際医療福祉大学 臨床医学研究センター教授)

~登壇者紹介~

黒木 春郎 医療法人社団嗣業の会 理事長 こどもとおとなのクリニック パウルーム 院長

千葉大学医学部卒業 同年小児科学教室入局

千葉大学関連病院勤務、千葉大学医学部文部教官等を経て

2005年 外房こどもクリニック開設 院長(千葉県いすみ市)

2008年 医療法人嗣業の会 理事長

2023年 こどもとおとなのクリニック パウルーム開設 院長(東京都港区)

医師・医学博士・公認心理師・臨床発達心理士・子どものこころ専門医

千葉大学医学部臨床教授 医師少数区域経験認定医師

2023年 日本小児科学会小児保健賞 受賞

2018年 日本外来小児科学会年次集会 会頭(東京国際フォーラム)

【基調講演1】10月18日(土)10:00-10:50 (第1会場)

デジタル医学への期待:行政の観点から

応長:黒木 春郎(医療法人社団嗣業の会 理事長 こどもとおとなのクリニックパウルーム 院長)

国が推進する医療 DX が適切に進むように、日本医師会は、全面的に協力しながら、国に対し提言を行うとともに、日本医師会と しても取り組んでいるので、その内容と課題を紹介する。日本医師会が目指す医療 DX は、「国民・患者の安全・安心でより質の 高い医療」の提供と「医療現場の負担軽減」の両立である。災害時や救急時の情報活用など実際に役立つケースも増えてきたが、 一方、電子処方箋や電子カルテの普及、費用・業務負担の増大、サイバーセキュリティ問題などの課題も山積しており、国による支 援の大幅な強化など、対策が必要である。

~登壇者紹介~

長島 公之 日本医師会 常任理事

平成4年4月6日~ 現在 平成 20 年4月1日~令和2年6月 17 日 平成 22 年4月1日~平成 24 年6月 23 日 平成 22 年6月 22 日~平成 30 年6月 23 日 日本医師会「医療IT委員会」委員 平成 24 年6月 23 日~ 現在 平成 29 年4月1日~平成 30 年6月 23 日 日本医師会「年金委員会」委員 平成 30 年6月 23 日~ 現在

長島整形外科 院長 下都賀郡市医師会 理事 栃木県医師会 理事 栃木県医師会 常任理事 公益社団法人 日本医師会 常任理事 【シンポジウム1】10月18日(土) 10:00-10:50 (第2会場)

Next Generation Symposium

座長:井上 祥(横浜市立大学共創イノベーションセンター、株式会社 GENOVA、京都大学) 三澤 園子(東京科学大学脳神経病態学分野教授)

1億人で医療の未来を考える。医療×アントレプレナーシップメディア【みらいアントレ医学部!!】

2025 年 8 月、「1 億人で医療の未来を考える」を掲げるオンライン医療メディア【みらいアントレ医学部!!】を横浜市立大学共創イノベーションセンターと提携し設立した。本メディアは、若手人材の学びの場と市民・他業界への橋渡しの場を二軸に運営し、アントレプレナーシップを「今の常識をより優しくする営み」と再定義する。

理念はオープンアクセス/リスペクト/GRIT。基礎知識から最新動向までを誰もがアクセス可能な形で発信し、病院や学校にとどまらない「第3のプラットフォーム」として、医療・ヘルスケアを誰もが対等に、中立に考えていく場を目指す。(岩瀬すみれ)

AI で世界と医療はどう変わるのか~医学生 AI ベンチャー起業家の観ている未来~

AI 技術の急速な進歩は、内科・外科ともに大きな変革を起こそうとしている。AI の進歩を目の前に、一度医学の道を外れてでも 技術を真剣に学びたいと思い立ち、大学を休学。カバン一つで東京に出てきて AI のベンチャーを起業した。

本公演では、AI の最前線で私が見ているものと、特に医療における AI の革新について情報を共有したい。そもそも「AI とは何か」を医療者にわかりやすい形で共有し、これからの医師キャリアを皆で考える時間としたい。(木村怜央)

~登壇者紹介~

岩瀬 すみれ 横浜市立大学医学部医学科 5 年 みらいアントレ医学部!!プロデューサー

横浜市立大学医学部医学科5年

木村 怜央 三重大学医学部医学科 3 年 株式会社 Vivixy 代表取締役

2004 年三重県伊勢市生まれ。株式会社 Vivixy 代表取締役。

三重大学医学部を3年次に休学し、AIスタートアップ Vivixy を創業。

創業以来、多数のエンタープライズの AI 開発・導入支援を実施。現在は AI 事業に並行して、医療機関向けの AI SaaS 事業に注力。

2025 年 8 月より、日本初の「ミライ病院長」として熊本市の病院の AI・DX 顧問に 就任。赤字に苦しむ日本の医療機関をテクノロジーの力で再生するための、モデル病 院作りをリード。

長岡 英史 東海大学医学部医学科 5 年 リンギ株式会社代表取締役

2012 年に慶應義塾大学経済学部を卒業後、A.T.カーニー(現 Kearney)にて幅広い業種の戦略コンサルティング業務に携わる。その後、設立まもないメルカリにてインターンを行ったのち、最初の会社を起業。この起業時の経験から、自分で提供するサービスを自分で開発することの必要性を痛感し、プログラマーの道へ。現在、フリーランスのディベロッパーとして、WebアプリケーションではRubyon Rails や Laravel (PHP)、機械学習ではPythonのプロジェクトに携わる。並行して再度起業し、個人病院向けシステム(レセプトコンピュータ)の開発も手がけるほか、医療系スタートアップのアドバイザーも務める。またプログラミング教育をライフワークとしており、数多くの勉強会も主催。自ら講師としてプログラミングの普及に力を注いでいる。医療 DXの可能性を感じ、自らドッグフーディングを行うべく東海大学医学部に入学。現在医学部医学科5年生。趣味はオーケストラでのヴァイオリン演奏。

【国際シンポジウム1】10月18日(土)11:00-11:50 (第1会場)

サイバーセキュリティ対策の世界の潮流と我が国の課題

座長: 宮田 俊男(医療法人社団 DEN 理事長、早稲田大学研究院客員教授)

医療分野におけるサイバーセキュリティ対策の世界的な動向。

本セッションでは、医療情報共有・分析センター(Health-ISAC)の代表兼 CEO であるデニス・アンダーソン氏が、ISAC の歴史、その役割、そして重要インフラ機関に対するサイバー脅威の進化について概説します。その後、サイバー脅威の現状に関する最近の動向について解説します。アンダーソン氏は、医療業界が特に懸念すべき点について言及します。最後に、医療機関がこれらの懸念や脅威を予防し、レジリエンスを維持するために実施してきた取り組みと戦略について説明します。(Denise Anderson)

国内医療分野におけるサイバーセキュリティ関連規制の動向と今後

2023 年から本格開始された医療 DX というデジタル化の<アクセル>とともに、国内医療分野では<ブレーキ>としてのサイバーセキュリティ関連規制が本格化された。医療法や薬機法では病院や薬局におけるサイバーセキュリティは医療安全管理の一部として義務化され、医療情報システム・サービスや医療機器においても提供者/利用者双方に対して適切なセキュリティ対策の実施が求められている。本講演では、こうした国内の医療サイバー規制に一貫して通底する基本要件を概説しつつ、今後、国内医療分野はどのようなデジタル規制と向かい合っていくことになるのかについて考えたいと思う。(江原悠介)

~登壇者紹介~

Denise Anderson

President and CEO of the Health Information Sharing and Analysis Center

デニス・アンダーソン - Health-ISAC President & CEI

デニス・アンダーソン(Denis Anderson)は Health Information Sharing and Analysis Center(Health-ISAC)の President 兼 CEO です。Health-ISAC は、 医療業界の企業が直面する物理的およびサイバー脅威について、情報に基づいたリスク ベースの意思決定を行うために活用できる、タイムリーで有益な状況認識のための信頼 できるフォーラムを提供する、世界的な非営利団体です。デニスは ISAC 全国協議会の 議 長 を 務 め、 Global Resilience Federation (GRF)、 Cyber Future Foundation の理事を務め、Health and Public Health Sector Coordinating Council のサイバーワーキンググループのアドバイザーも務めています。さらに、数多く の業界団体や諮問団体、イニシアチブに参加し、世界各地のイベントで講演を行っていま

す。

江原悠介 一般社団法人ヘルスケア ISAC Japan 事務局長、 PwCJapan 有限責任監査法人ディレクター

国内外のヘルスケア分野におけるデジタル DX やレギュレーション対応へ様々な支援を実施。 また、ヘルスケア ISAC Japan の活動として、国内の医療関係団体や医療 IT ベンダと共同での セキュリティ調査・レポーティング活動、各種セミナー講演、国内の医療機関等へのセキュリティパ ーソナルアドバイス等を通して、

国内ヘルスケア分野のセキュリティ向上に向けた教育・啓発活動を行っている。

【シンポジウム 2】 10 月 18 日(土) 11:00-11:50 (第 2 会場)

急性期~慢性期までの遠隔医療の実践ヒトとテクノロジーの融合について

座長:高木 俊介(横浜市立大学附属病院 集中治療部 准教授·部長)

地域医療構想と遠隔医療〜統合再編期を迎えた病院のリアル×バーチャルの統合再編への示唆〜

病院は、組織を超えた医療機能の統合と再編を迫られている。つまり、医療技術の高度化、人口構造の大規模な変化により、医療 資源(医師、看護師などの人的資源、医療機器、建物設備などの物的資源)の集約と再配置が求められている。この方向性は、地 域医療構想でも明確に謳われている。

こうした流れは、働き方改革、インフレに伴う人件費や設備投資の増大により強まっており、病院は、現状有姿の事業モデルでは、 提供医療の価値向上が困難となるだけでなく、事業継続そのものを担保できなくなりつつある。

こうした状況下、具体的な統合・再編としては、複数の病院をひとつの病院施設に統合、ないしは複数病院に分散した医療機能を 集約する物理的統合・再編が徐々に進みはじめている。ただし、こうした物理的統合・再編がステークホルダーの調整に膨大な時間を要するほか、患者の医療へのアクセスを損ねる可能性もあり、もうひとつの有効な手法として、デジタル技術を活用したバーチャルな医療機能の統合・再編が重要性を増しつつあると考える。この基本的概念は、優れた臨床技術を有する専門家のノウハウを、デジタル技術と医療データにより支え、より広く活用するというものである。当該手法は、遠隔 ICU をはじめ病院内の様々な機能での活用に加えて、将来的には在宅医療への広がりも期待される。(松田淳)

アナログ・インターフェースを基盤とした地域医療 DX の設計論:中山間地域における社会実装の考察

テクノロジーの進歩と安価なデジタルデバイスの普及により、少子高齢化や過疎化による地域課題の解決策として DX が注目されている。日本の国土の約7割を占める中山間地域では、人口減少に伴う課題がさらに深刻化しており、DX の活用が強く期待されている。ただし、DX を社会実装するには、デジタル技術だけでは不十分で、アナログの仕組みや運用も不可欠である。たとえば、インクルーシブスクエアのような交流拠点を設け、対面でのリアルなコミュニケーションや、デジタルサービスの利用支援を行うことで、アナログの力でデジタルを支える取り組みが求められる。本稿では、中山間地域における DX 事業に参画した経験を紹介する。(夏井淳一)

遠隔モニタリングで活用される ICU Anywhere を目指した技術紹介

株式会社 CROSS SYNC では、あらゆる病床に集中治療室(ICU)並みの医療環境をという目標を"ICU Anyware"と謳い、 患者映像とバイタルサインを用いたマルチモーダル AI の研究開発を進めている。本講演では、日本医療研究開発機構「医工連携・人工知能実装研究事業」に採択された、看護ケア支援の「睡眠状態や危険行動の検知」、トリアージ判断支援の「重症度スコア計算」に関する遠隔モニタリングとしての AI 見守り機能の研究開発内容を紹介するとともに、ICU から発展したこれら技術の"ICU Anyware"としての展開について、地域医療における情報共有機能の一環として論ずる。(田中正視)

~登壇者紹介~

松田 淳 KPMG ヘルスケア代表

2002 年 6 月に当社参画以来、サービスプラバイダー(医療機関、シニアリビング事業者等)、サプライヤー(医療機器、医薬品)、デジタル領域を含むヘルスケア産業に関連する事業体の戦略立案、投資・ファイナンス、事業再編・統合、事業再生に関するアドバイザリーサービスに従事

当社参画以前は、日本長期信用銀行に 6 年間の米国駐在を含め 13 年間勤務、トレーディング、ストラクチャードファイナンス、コーポレートリストラクチャリング、M&A 等投資銀行分野の業務に関与

東京大学 高度医療経営人材育成プログラム 戦略分野講師、(独)広島県立病院機構評価委員会委員、兼役員選考委員会委員、学校法人 北里研究所・北里大学非常勤参与(病院改革担当)国立大学法人 東京科学大学医療イノベーション機構非常勤講師

夏井 淳一 バーズビュー 株式会社

- 1995年 山形大学大学院電子情報工学専攻を修了
- 1995年 フクダ電子株式会社に入社
- 2012 年 COO としてバーズ・ビュー株式会社を創立
- 2016年 バーズ・ビュー株式会社の CEO に就任
- 2017年 理事として一般社団法人日本イスラエルビジネス協会を創立
- 2019年 一般社団法人日本イスラエルビジネス協会の代表理事に就任
- 2023 年 情報整備局株式会社の COO に就任

田中 正視 CROSS SYNC 執行役員 研究推進部部長

株式会社 CROSS SYNC 執行役員・研究推進部部長。東海大学医学部客員講師 ゲノム医学を専門として、東京大学医科学研究所、京都大学 iPS 細胞研究所などに 勤務。

DeNA グループで AI 開発研究、参加型研究データ利活用プラットフォームでの研究推進に従事した後、大手製薬企業を経て現職。 博士(医学)。

【基調講演 2】10月18日(土)13:00-13:50 (第1会場)

デジタル医学への期待:行政の観点から

座長:磯部 陽(国際医療福祉大学 臨床医学研究センター教授)

情報通信技術(ICT)の発展がもたらす「デジタル医学」は、AI や機械学習を用いて膨大な医療データを解析することで、個別化医療や早期診断、遠隔医療、デジタルセラピューティクス(DTx)といった革新的な医療サービスを可能にしている。これにより、診断精度向上、医療へのアクセス改善、生活習慣病の予防など、多岐にわたる恩恵が期待される。特に、少子高齢化や医療従事者不足といった日本の課題解決に貢献する強力なツールとなり得る。ただし、適切に実装を導くには、データの標準化、サイバーセキュリティの確保、法制度の整備、倫理的な議論といった課題を克服する必要があり、アカデミアや産業界に加え、行政の果たすべき役割も大きいと考えられる。

~登壇者紹介~

鈴木 康裕 国際医療福祉大学 学長

昭和 59 年慶應大学医学部卒。同年厚生省入省 平成元年、平成 2 年 ハーバード大学大学院修了(MPH, MSc)

平成 10 年世界保健機関派遣(ADG(事務局長補:局長級)として 4 年間勤務)、

平成 17 年厚生労働省研究開発振興課長、

平成 18 年厚生労働省老人保健課長,

平成 21 年厚生労働省新型インフルエンザ対策推進本部事務局次長、

平成 22 年厚生労働省医療課長、

平成 24 年防衛省衛生監、

平成 26 年厚生労働省技術総括審議官、

平成 27 年(併)グローバルヘルス戦

略官、

平成 28 年 6 月厚生労働省保険局長、

平成 29 年 7 月厚生労働省医務技監、

令和 2 年 8 月退職

令和 3 年 3 月国際医療福祉大学副学長、

令和 4 年 4 月より国際医療福祉大学学長

同 年 12 月世界保健機関(WHO)執行理事就任

【シンポジウム3】10月18日(土) 13:00-13:50 (第2会場)

デジタルヘルススタートアップが変える医療現場

座長:中安 杏奈(一般社団法人 Japan Healthcare Innovation Hub 代表理事/Globis Capital Partners)

高度医療の進歩と格差是正に向けた新しい挑戦 ~未診断・治療未到達の患者を0にするために~ がんや希少疾患をはじめとする領域では、診断技術や新薬開発が急速に進歩する一方で、専門化・細分化により必要な知見が臨 床現場に届かず、診断の遅れや治療機会の格差が生じています。Medii は、主治医と専門医をオンラインで繋ぐ「E コンサル」や、 生成 AI を活用した臨床疑問解決ツール「Medii Q」により、誰も取り残されない医療の実現を目指しています。本講演では、未 診断・治療未到達患者の課題、最新の解決モデル、そして臨床現場における活用事例を共有し、医師が直面する"知識とアクセス の壁"をどのように乗り越えるかを展望します。(山田裕揮)

「精神医療を変革する SaMD の最前線と今後の展望」

近年、プログラム医療機器(SaMD)は、治療や診断を支える新たな選択肢として急速に広がりを見せています。精神医療領域においても、国内外でうつ病や不安症などを対象としたアプリの研究開発が進められています。本講演では、SaMD を取り巻く国内外の規制や市場動向を概観しつつ、当社が取り組む精神疾患向けアプリ開発の実例をご紹介します。デジタル技術による医療現場の効率化、アクセス改善、そして患者体験の変革の可能性について議論を深め、スタートアップが果たす役割を考察します。(武川大輝)

~登壇者紹介~

山田 裕揮 株式会社 Medii 代表取締役医師

株式会社 Medii 代表取締役医師 東京医科歯科大学客員准教授 和歌山県出身、和歌山県立医科大学医学部卒、慶應義塾大学医学部医学研究科卒。 自身も不治の難病患者。それをきっかけに難病患者が多い膠原病内科医となる。日本リウマチ学会専門医・指導医。

難病や希少疾患においては患者、医師数が共に限られる構造から、診断治療において最適化の課題が大きい点に着目。医師向けの専門医相談アプリである E-コンサルを開発、無償提供。現在は指定難病の 99%をカバーするに至り、日本最大となるプラットフォームに成長し、限られたエキスパート専門医の知見の最大化に取り組んでいる。全国の早期診断と最適治療を促進させることで、多数の大手製薬企業との医師向け疾患啓発プロジェクトにより今までなかった持続可能な事業モデルを実現。過去光が当たらなかったが人口5%を占める希少疾患・難病の課題解決に貢献し、"誰も取り残さない医療を"実現することを目指している。Forbes 100 NEXT GENERATION LEADERS 選出。東洋経済すごいベンチャー100。

武川大輝 emol 株式会社 代表取締役 COO

芸術系の大学を卒業後、デザイン会社を設立。

その後、2019 年にメンタルヘルス領域での事業を開始し、emol 株式会社を創業。創業 者兼 COO として事業開発全般に携わる。デジタル技術を活用した精神科医療の変革を 目指し、治療用アプリや診断用アプリの研究開発、オンライン認知行動療法サービスの提 供を推進している。産業分野におけるメンタルヘルス支援の拡充にも取り組み、医療機 関・企業・研究機関と連携した新たな支援体制の構築を目指している。 【特別シンポジウム 1】 10 月 18 日(土) 13:50-15:00 (第 1 会場)

デジタル医学領域の臨床現場での実用化の最前線

座長:高江慎一(前厚生労働省医療機器審査管理課長、消費者庁食品衛生基準審査課長) 任 和子(京都大学大学院医学研究科人間健康科学系専攻、日本看護協会副会長)

デジタル医学領域の実用化の最前線

社会保障費の急激な増加、世界で類を見ないスピードで突入する超高齢化社会、さらには急速な人口減少、物価の高騰、働き方 改革、タスクシフティング、多くの病院の経営赤字など日本の医療・介護を取り巻く社会保障制度は多くの課題を抱えている。一方 で、イノベーション領域において、日本は世界から立ち遅れ、日本では開発の見込みすら見えないドラッグロス、デバイスロスの問題も発生し、生成 AI を含むデジタル領域の競争も激化しているが、日本は周回遅れとなっている状況にある。そうしたなか、最近、日本においても、新型コロナウイルスによるパンデミックも大きなきっかけとなり、オンライン診療や医療用ソフトウェア、人工知能、データの利活用、サイバーセキュリティをはじめとしたデジタル領域における制度改革、産官学連携が大きく進んでいる。診療所・病院の経営改革を進め、さらには地域医療を成り立たせ、そして、危機に瀕している日本の冠たる国民皆保険制度のサステイナビリティを高めるために、臨床の現場に DX をいち早く取り入れていくことは一丁目一番地である。実際、ここ数年において、オンライン診療、AI を応用した医療用ソフトウェア(SaMD)、ウェアラブルデバイス、マイナ保険証、医療と介護のデータ連携、生成AI による働き方の効率化など最新のデジタルシステムやツールが急速に普及し始めている。具体的に診療への実践事例を紹介するとともに今後の課題、方向性についても展望する。(宮田俊男)

医用画像からの 3DCG 再構成を「超速く」「超綺麗に」しただけで何かが変わるのか?

CT / MRI 画像からの 3DCG 再構成は良く知られた技術ですが、医療現場では昔ながらのわかりにくい質感で、その場で自由には動かせず、事前に時間をかけて作られた 3DCG のパラパラ漫画であることが多いのが現状です。そこで私は、高度な医用画像処理技術は使わず、とにかく高速且つとにかく綺麗な 3DCG を作るソフトウェア Viewtify®を開発しました。容積計算やシミュレーション機能などは全くなく、画像を忠実に 3DCG にするだけですが、4DCT を自由に動かすことも出来ます。 市販の裸眼立体視ディスプレイにも対応し、3DCG を奥行き感のある本当の 3D として確認することも出来ます。 「超速く」「超綺麗に」しただけのソフトウェアがもたらす可能性について、心臓 CT などの具体的な症例画像を用いてお話致します。 (瀬尾拡史)

生成 AI 搭載型シミュレーション教材『あせすまいる』の開発と評価 ―看護教育における実装と教育的意義―看護基礎教育では、臨床判断力やアセスメント力を含むコンピテンシーの育成が重視されている。アウトカム基盤型教育への移行が進む中、卒業時に求められる実践能力の明確化と、それを支える学習環境の構築が課題となっている。本講演では、こうした課題に対応した生成 AI 搭載型シミュレーション教材『あせすまいる』の設計と実装について報告する。学生はゲーム形式で多様な情報を取捨選択し、思考過程を体験的に学ぶ。シナリオ自動生成機能により教材の質と一貫性を保ちつつ、教員の負担軽減と継続的な活用を実現した。文献レビューに基づく評価視点を基に教材評価枠組みを再構築し、AI 活用の教育的意義と倫理的課題について考察する。(川上祐子)

~登壇者紹介~

宮田 俊男 医療法人社団 DEN 理事長、早稲田大学研究院客員教授

1999年 早稲田大学理工学部機械工学科卒業

2003年 大阪大学医学部医学科卒業(3年次編入学)

2003年 大阪大学第一外科入局(心臓血管外科)

2009年 厚生労働省 入省

2013年 日本医療政策機構 参画

同年内閣官房健康・医療戦略室 戦略推進補佐官に任命

2017 年 医療法人社団 DEN みいクリニック(東京都、大阪府) 理事長 (京都大学客員教授、東北大学客員教授、国立がん研究センター政策室長、 神奈川県顧問、厚生労働者参与を歴任)

2020年 早稲田大学理工学術院教授

2025年 早稲田大学理工総研研究院客員教授

瀬尾 拡史 株式会社サイアメント

2010 年 東京大学総長賞・総長大賞 題目「全国初となる裁判員裁判第1号事件で 使用された、被害者の傷の状況を表す14枚の3DCG 証拠画像の制作」

2011年 東京大学医学部医学科卒業、東京大学医学部附属病院 初期臨床研修医

2013 年 株式会社サイアメント 代表取締役社長

2015年 SIGGRAPH2015 Computer Animation Festival BEST VISUALIZATION OR SIMULATION

2016年 京都造形芸術大学 客員教授

2017年 東京大学大学院 情報理工学系研究科 学術支援専門職員

2019 年 デジタルハリウッド大学大学院 特任准教授

2020年 東京大学先端科学技術研究センター マシンインテリジェンス分野 学術支援専門職員

2021年 東京大学大学院医学系研究科 生体物理医学専攻 博士課程卒業

2023 年 順天堂大学大学院 医学系研究科 心臓血管外科学 客員准教授

川上 祐子 京都府立医科大学医学部看護学科講師

京都府立医科大学 医学部看護学科 講師。

早稲田大学大学院にて修士・博士(人間科学)を取得。

専門は老年看護学、在宅看護学、教育工学。教育 DX の視点から、看護基礎教育における アセスメント力や臨床判断力の育成をテーマに、ゲーミフィケーションや生成 AI を活用した 教材開発に取り組んでいる。

現在は、生成 AI によるシナリオ自動生成機能を搭載した教育支援システム『あせすまいる』 の開発と、その実装に向けた取り組みを進めている。

【特別シンポジウム 2】 10月 18日(土) 15:00-16:20 (第1会場)

デジタル技術は医療をどう変えるのか?

座長:黒木 春郎(医療法人社団嗣業の会 理事長 こどもとおとなのクリニックパウルーム 院長) 井上 祥(横浜市立大学共創イノベーションセンター、株式会社 GENOVA、京都大学)

テクノロジーの進歩による未来の遠隔医療

報遠隔医療は対面診療とともに今後の医療の中心となる。現状では生体パラメータの取得が難しいという限界がある。

医療機関以外の場所で遠隔で生体パラメータを取得するためには、非侵襲的に採取できる少量の試料による分析が必要である。 工学技術の進歩により wearable device は急激に発展しており、涙、汗、皮膚ガス(体臭)などを分析することで病態を判定できるようになりつつある。一方、そのような device により遠隔で生体パラメータが取得できるようになると、大量のデータを人工知能によって分析する技術と大量のデータを augmented reality などにより表示する技術が活用されるようになるであろう。 (南学正臣)

国家による包括的医療提供体制の下での医療情報技術~イギリスの到達と課題~

たしかに我々は新しい技術に対して「受け身」だ。新しい技術を所与とした医療の手順や医療者・患者関係、新しい技術を所与とした地域医療、新しい技術を所与とした診療報酬、新しい技術を所与とした人員配置、新しい技術を所与とした制度や法整備が必要になる。外側からやってくるものに対して、あらかじめ全てを予見して、準備万端でその技術を迎えることはできない。だからこそ、我医療者は、しばらくの間、現場で新しい技術と格闘し、行政や立法とクロストークしなければならない。その一方で、今ある医療の実態そのものが「技術」のあり様を規定するという側面もある。この医療の側の能動は、我々自身を比較対象とする垂直的視座からはとらえ切れない。医療から技術へのダイナミズムを補足するための手っ取り早い方法は、歴史的経緯や目の前の医療の実態が異なる他国と我々自身を水平的に比較することだ。その一例として、イギリスを取り上げる。(森井大一)

~登壇者紹介~

南学 正臣 東京大学 医学部長医学研究科長

1988年 東京大学医学部医学科卒業

東京大学医学部附属病院、公立昭和病院、東京船員保険病院を経て

1992年 東京大学大学院医学系研究科入学

1994年 ワシントン大学腎臓内科 visiting scientist

1997年 東海大学総合医学研究所 日本学術振興会特別研究員

1998年 東京大学医学部附属病院 腎臓・内分泌内科/血液浄化療法部 助手・助教

2012年 東京大学大学院医学系研究科 腎臓内科学 教授

2014年 東京大学医学部附属病院 副院長【兼務】(~2019年)

2019年 東京大学大学院医学系研究科 副研究科長・副医学部長【兼務】(~2023年)

2023年 東京大学大学院医学系研究科 研究科長・医学部長【兼務】

迫井 正深 厚生労働省 厚生労働医務技監

1962 年生まれ 広島県出身

1989年~ 東京大学医学部卒業、東大病院、虎の門病院等で外科臨床 1992年 厚生省入省、

1995年 ハーバード大学公衆衛生大学院(公衆衛生学修士取得)

2006年~ 広島県健康福祉局長

2009 年~ 厚労省復帰後、介護報酬、地域医療計画・地域医療構想、診療報酬の 担当課長 を歴任

2018年~ 医政局審議官を経て医政局長

2021年~ 内閣官房内閣審議官・新型コロナウイルス等対策推進室長

2023年7月~厚生労働省医務技監·内閣感染症危機管理統括庁対策官

森井 大一日医総研 主席研究員

2005年3月 大阪大学医学部医学科卒業

2013年5月 Emory University Rollins School of Public Health 卒業

2021年 大阪大学大学院医学系研究科修了

(職 歴)

2005年4月 国立病院機構呉医療センター初期研修

2007年4月 国立病院機構呉医療センター専修医研修(高度救命救急センター)

2010年4月 大阪大学医学部附属病院感染制御部

<留学(2011.7~2013.5)>

2013年7月 厚生労働省大臣官房国際課(課長補佐)

2014年4月 厚生労働省医政局指導課・地域医療計画課(課長補佐)

2015年4月 公立昭和病院感染症科

2018年1月 大阪大学医学部附属病院感染制御部

2020年8月 厚生労働省医政局技術参与

2021年4月 日本医師会総合政策研究機構

【シンポジウム 4】 10 月 18 日(土) 16:00-17:30 (第 2 会場)

「デジタル医事法学」は必要か

座長:藤田 卓仙(公益財団法人 東京財団政策研究所 主席研究員)

デジタル医学に関する規制上の論点と、デジタル医事法学の可能性

本年度より「デジタル医学会」として新たに出発した本学会において、果たして「デジタル医事法学」を名乗る独自の領域は必要なのか。AI 診療支援や医療データ連携、説明責任・プライバシーといった論点は、既存の医事法や情報法の枠組みで十分に論じ得るのではないか。しかし、そうであるなら当学会は何を議論し、どこに新たな意義を見いだすのか。本シンポジウムでは、デジタル医学の進展に即した法学的探究の射程を多角的に検討する。規制改革推進会議などでの過去の検討例も振り返りながら現在地を検討する。(落合孝文)

~登壇者紹介~

落合 孝文 一般社団法人日本医療ベンチャー協会理事

慶應義塾大学理工学部数理科学科卒業。同大学院理工学研究科在学中に旧司法試験合格。森・濱田松本法律事務所で約9年東京、北京オフィスで勤務し、国際紛争・倒産、知的財産、海外投資等を扱った。現事務所に参画後は、医療、金融、不動産、MaaS、ITなどの業界におけるビジネスへのアドバイス、新たな制度構築などについて活動を行っている。政府の審議会、自治体のアドバイザー、業界団体の理事や東京大学法学部非常勤講師、慶応義塾大学など、産官学の様々な役職を務める。現所属先ではプロトタイプ政策研究所を立ち上げて所長を務め、またスマートガバナンス株式会社代表取締役共同創業者を務める。FT Innovative Lawyers Asia-Pacific Awards Innovative Lawyers

in Digital Regulation (2025/Firm), Innovation in Adjacent Services (2023/Firm)や、日本のルールメーカー 30人(Forbes JAPAN 2022 年 8 月号、2022)等の受賞歴がある。内閣官房デジタル行財政改革会議事務局政策参与(データ利活用制度検討担当)、同会議「データ利活用制度・システム検討会」委員、内閣府規制改革推進会議スタートアップイノベーション促進 WG 座長、厚生労働省薬局・薬剤師の機能強化等に関する検討会委員、厚生労働省オンライン診療の適切な実施に関する指針の見直しに関する検討会委員、厚生労働省健康・医療・介護情報利活用検討会 医療等情報の二次利用に関する WG 委員、一般社団法人日本医療ベンチャー協会理事などを歴任している。

稲谷 龍彦 京都大学 大学院法学研究科 教授

専門はデジタル法及び刑事司法。

京都大学大学院法学研究科教授。 東京大学文学部卒。京都大学大学院法学研究科法曹養成専攻修了。 京都大学大学院法学研究科助教、同准教授を経て現職。

内閣官房「データ利活用制度システム検討会委員」、経産省「Society 5.0 における新たなガバナンスシステム検討会委員」、デジタル庁「デジタル関係制度改革検討会座長」などを兼任。パリ政治学院法科大学院及びシカゴ大学政治学部にて在外研究。

【教育講演 1】10月18日(土) 16:30-17:20(第1会場)

リアルワールドデータに基づく地域医療需給の推計 ~新たな地域医療構想(2040年)に向けて~

座長: 丹野 清美(国際医療福祉大学医療福祉学部医療福祉・マネジメント学科講師)

医療現場で生成されるデジタルデータは、ミクロな臨床実践における活用だけでなく、マクロな医療提供体制の検討においても重要な役割を果たしている。本講演では、新たな地域医療構想(2040年)に向けて地域類型と医療機関機能に基づく検討を行う際に鍵となる今後の地域医療需給の見通しについて、患者の個票データに基づいてリアルワールドでの医療提供の実態を把握することができる匿名医療保険等関連情報データベース(NDB)・匿名診療等関連情報データベース(DPC データ)と、医療機関単位で診療機能を捕捉する病床機能報告等の調査データを組み合わせて可視化した資料を用いて解説する。

~登壇者紹介~

石川 ベンジャミン 公一 国際医療福祉大学 医学研究科 教授

1967年米国カリフォルニア州ロサンゼルス市生まれ。

1990 年東京大学医学部保健学科卒。東京大学大学院医学系研究科保健学専攻にて 1992 年に修士課程、1995 年に博士課程を修了後、国立がん研究センターに入職。がん対 策情報センターがん医療費調査室長、社会と健康研究センター臨床経済研究室長等を経て 2018 年より現職。東京都地域医療構想調整部会、横浜市保健医療協議会等の委員。 リアルワールドデータに基づく診療プロセス解析やオープンデータを利用した医療提供体制 の分析を専門としている。 【講演】10月18日(土)17:20-18:20 (第1会場)

リアルワールドデータとともに広がる未来 — OHDSI から学ぶ

座長:阿久津 靖子(一般社団法人日本次世代型先進高齢社会研究機構 代表理事)

~登壇者紹介~

平松 達雄 国際医療福祉大学 医療情報部/未来研究支援センター 教授 医療データ連携分析基盤協会 代表理事

九州大学医学部卒業後、研修医から PC ソフトウエアベンダーに転身。

研究開発部長、米国子会社 Director of R&D、本社専務取締役として研究開発に従事。大きな病気で約半年間入院し、その後インターネット関連企業を運営。生活習慣病対策に関わるべく九州大学大学院博士課程を修了、疫学の研究にて学位取得。東京大学医学部附属病院企画情報運営部および医療経営政策学講座にて大規模リアルワールドデータ基盤(MID-NET)の東大病院側管理者として運営と同時にバリデーション事業等に参加し、さらに診療情報の匿名化2次利用研究会を主宰するなど、多施設電子カルテ医療情報の利活用実用化に注力してきた。現在は国際的な医療データ連携基盤である OHDSI(オデッセイ)の日本代表であり国内的国際的両面から診療情報の大規模活用を進めている。

【大会長講演】10月19日(日) 9:00-9:30 (第1会場)

生成 AI による退院サマリ作成支援導入の経験

座長:磯部 陽(国際医療福祉大学 臨床医学研究センター教授)

入院患者の退院サマリ作成は、他職種へのタスクシフトが困難で、AI 導入による医師業務の効率化が見込める領域の一つである。当院で2024年に生成 AI を用いて、13名の医師による退院サマリ作成支援機能を使用した。診療科にもよるが、サマリ作成時間の短縮(71.2%削減)と、記載内容の向上を得られた。ボタンを1回クリックすると、数分で退院サマリの下書きが生成され、解説付きの病名も記載される。今後のカルテ共通プラットフォームの整備でFHIR 化したカルテでは、患者がスマホ等でサマリを閲覧できるようになり、退院サマリの質の向上が求められるが、生成 AI 利用により、医師間の記載のバラツキが減少し得ると考えられる

~登壇者紹介~

佐藤 智太郎 国立病院機構名古屋医療センター 医療情報管理部

1985年 名古屋大学医学部卒業、

1990 年 同医学研究科修了、米国 Thomas Jefferson 大学医学部 fellow 等を経て、

2004年 国立病院機構名古屋医療センター整形外科リウマチ科勤務、

医療情報管理部長兼整形外科医長

【国際シンポジウム 2】 10月 19日(日) 9:30-11:00(第1会場)

デジタル医学への期待:行政の観点から

座長:阿久津 靖子 (一般社団法人日本次世代型先進高齢社会研究機構 代表理事) 黒木 春郎(医療法人社団嗣業の会 理事長 こどもとおとなのクリニック パウルーム 院長) 井上 祥(横浜市立大学共創イノベーションセンター、株式会社 GENOVA、京都大学)

中国で進む医療情報連携 病院をこえて地域と個人がつながる医療情報 急速に進展する中国の医療デジタル化の実態を紹介し、病院から地域・個人に広がる仕組みを解説する。(冉闿睿)

ヘルスケアプラットフォーム sundhed.dk による医療情報連携とデータ活用

デンマーク全国の医療情報を一元的に管理する「sundhed.dk」の仕組みを紹介し、市民や医療従事者によるデータ活用の実態を示す。(Morten Elbæk Petersen)

医療情報連携のドイツの課題 ~EU 内での医療連携のあり方~

EU における医療データの標準化と相互利用の課題を示し、とりわけドイツ国内における制度的・技術的困難を論じる。 (Prof. Dr. Volker E. Amelung)

「日本の医療情報連携の現在地と未来への課題」

2020 年に世界を襲った COVID-19 によるパンデミックによって、医療提供のあり方はグローバルに大きく変化した。最も大きな変化の一つは、「非対面診療―オンライン・遠隔診療」の普及と標準化である。日本においても、医療法改正案の中で、オンライン診療を法定化する規定が盛り込まれた。時間と空間を超えて医療を提供することを可能にしていく医療 IT・IoT・Dx は、これからの在宅医療・地域包括ケアネットワークを支える不可欠のアイテムとなる。同時に、AI 診断など「診断治療―臨床」の場面だけではなく、日常的な健康管理・予防まで含めたトータルな意味での医療ケアー「ヘルスケア」―の形を大きく変えていく可能性を秘めている。(香取照幸)

~登壇者紹介~

冉闿睿(Rankairui)

教授 博士·修士指導教員、河南大学医療管理研究所所長

博士·修士指導教員、河南大学医療管理研究所所長

国連持続可能な都市発展コンサルタント、長江デルタ国家技術革新センター特約研究員。中国人民大学客座教授、河北大学教授、復旦大学学術指導委員会委員を務める。2018 年より「デジタル中国建設サミット」に連続参加、2016 年以降「世界インターネット大会(烏鎮)」に招待出席。専門はデジタル医療、医療管理、健康経済。著書に『医療業界大趨勢』。

Morten Elbæk Petersen

Information Technology & Innovation Foundation Managing Director

2002 年よりデンマーク国民健康ポータル sundhed.dk の代表を務め、医療デジタル化と情報連携を推進。

COVID-19 対応を牽引し、OECD・国連で高く評価される。

Dr.Oec.Volker Amelung ハノーファー医科大学教授、INAV 創設者

フォルカー・E・アメルング教授は、**inav(応用医療サービス研究民間研究所 GmbH)**の 創設者、CEO、株主である。2001 年以来、ハノーファー医科大学において国際医療システム 研究の教授職を務めている。スイス・ザンクトガレン大学およびフランス・パリ・ドーフィーヌ大 学で経営学を学び、ザンクトガレン大学で博士号を取得した。2007 年から 2022 年までは、 **ドイツ・マネージドケア協会(Bundesverband Managed Care e. V. - BMC)**の会 長を務めた。アメルング教授は、世界保健機関(WHO)を含む国内外の医療関連組織に対す

るコンサルタントとして豊富な経験を持つ。彼の研究と活動の中心は、マネージドケアおよび統合ケアであり、医療システムのステークホルダーへの助言、ケアモデルの評価、革新的なヘルスケアコンセプトの開発に取り組んでいる。

香取 照幸

一般社団法人未来研究所臥龍 代表理事、

兵庫県立大学大学院 社会科学専攻科 経営専門職専攻 特任教授者

一般社団法人未来研究所臥龍代表理事/兵庫県立大学大学院社会科学研究科特任教授。 東京都出身。1980年東京大学法学部卒。同年厚生省(現·厚生労働省)入省。

在仏 OECD 事務局研究員、高齢者介護対策本部事務局次長、内閣参事官(小泉純一郎総理大臣官邸)、政策統括官、内閣官房内閣審議官、年金局長。この間介護保険法創設や社会保障・税一体改革等を担当。2016年退官。

2017年在アゼルバイジャン共和国駐箚日本国特命全権大使、

2020 年上智大学人間科学部教授。主著『介護保険制度史』(共著)『教養としての社会保障』 『民主主義のための社会保障』『社会保障論 I 』『高齢者福祉論』(いずれも東洋経済新報 社)。日本地域包括ケア学会評議員、日米医学医療交流財団理事、全世代型社会保障構築 会議構成員。 【特別講演】10月19日(日) 11:00-11:50(第1会場)

頸椎損傷からの復活 ~いつか山で死ぬとわれて~

座長:黒木 春郎(医療法人社団嗣業の会 理事長 こどもとおとなのクリニック パウルーム 院長)

チームによる双方向通信機能+見守りシステムを用いた在宅ケア

本研究は、センサーと遠隔通信機器を活用した在宅介護モデルの可能性を検証した概念実証である。介護専門職・家族・高齢者が協働し、受動的遠隔モニタリング(PRM)と双方向コミュニケーション機能を備えたシステムを 12 週間運用。対象は重度障害者 1 名、認知症高齢者 4 名、家族介護者、介護専門職 15 名。技術的課題はあったが、システム性能は概ね良好で、予防的・双方向的特性が好評だった。PRM に適合したチームベースのケアの重要性も示され、限られた資源下での個人中心医療ケアの需要に対応するには、補助技術(AT)の統合が今後さらに求められる。本研究は、生活の質向上に向けた AT の可能性と、関係者の協働の意義を示している。

~登壇者紹介~

増山 茂 東京医科大学病院 特任教授

1948年富山県生まれ 中部高校、千葉大学医学部呼吸器内科出身 千葉大学医学部肺癌研究施設、

了徳寺大学学長、東京医科大学病院渡航者医療センター兼任教授を経て、

現職 ネパールヒマラヤ、チベット、崑崙山脈、天山山脈、カラコルム、パミール、アンデス、北極圏パフィン島などにて「低酸素と医学」「登山と医学」を調査研究し、高所医療に永らく携わる。

4年前に、長野でバックカントリー中、崖から転落し頚髄損傷となる。その後、リハビリを重ね、社会復帰する。 身体障害者 1級、要介護 5。

現在は「高齢者医療介護と ICT/AI/Robotics」に研究領域を移行中である。

【シンポジウム 5】 10月 19日(日) 11:00-11:50(第2会場)

産学連携シンポジウム

座長:井上 祥(横浜市立大学共創イノベーションセンター、株式会社 GENOVA、京都大学)

産学連携の実際と可能性

本発表では、医療分野における産学連携の意義と展望を、千葉大学病院次世代医療構想センター当センターの活動を通じて論じる。当センターは特徴的な点として、大学内にありながら運営資金のすべてを外部資金に依拠しており、その意味で産学連携そのものを基盤として成り立っている組織である。資金調達、研究推進、社会実装までのすべての過程において、企業や自治体との協働を不可欠の前提としている。現在の日本の医療は、人口減少・高齢化、医師の地域偏在、財政制約など多層的な課題に直面している。これらは単一のアクターによる解決が困難であり、大学の研究知見、企業の技術力、自治体の政策実行力を結びつけることで初めて、持続可能な解決策が形成される。したがって、産学連携は一時的な共同研究の枠を超え、医療の未来を形づくる基盤である。当センターでは複数の事例を通じてこの実装を進めている。第一に、NTT ドコモビジネスとの連携である。同社は通信インフラに加え、医療データの安全な取り扱いに関する技術を有しており、とりわけ「析秘」すなわちデータ解析と秘匿化技術の両立に関する協働を進めている。医療データは活用と保護のバランスが常に課題となるが、大学の倫理的ガバナンスと企業の秘匿化技術を組み合わせることで、研究の信頼性を担保しつつ実務的に利用可能な環境を整えることが可能となっている。こうした取り組みは、将来的に広域的な医療データ連携や新規診断支援システムの基盤となることが期待される。

第二に、ノボノルディスク社との連携である。同社は糖尿病を中心とした慢性疾患領域で世界的な知見を有しており、当センターは千葉県旭市において協働を進めている。CCD プロジェクトは同社が展開する、糖尿病をはじめとする生活習慣病の管理を地域単位で推進する活動であり、住民・患者への啓発、行動変容支援、デジタルツールの活用を含む包括的な地域連携モデルの構築を目指している。千葉大学の疫学研究や政策設計の知見と、企業の臨床経験・リソースを結びつけることで、地域に根ざした新しい慢性疾患対策の仕組みを実装しつつある。旭市 CCD は、その先駆的事例として国際的にも注目されつつある。

一方で、産学連携には課題も存在する。ゴールの違い、知的財産権の事前申し合わせ、人材流動性の不足などである。企業は収益性や広報を重視し、大学は公共性と学術的価値を優先する。この二つを調整し、早い段階から契約やルールを明確化することが不可欠である。また、産と学を往来できる人材が少ないことも障壁となっている。研究者が企業経験を積み、企業人が大学教育や研究に関与する循環を生み出すことが、連携の厚みを増す。

産学連携の本質は「制度」や「契約」にとどまらず、「人」と「信頼」に根ざしている。当センターが外部資金のみにより運営されていることは、産学連携の実効性を証明するとともに、信頼関係の構築がなければ成り立たないという現実を示している。共通の目的は「より持続可能な保健医療をつくる」という一点であり、この共有こそが異なる立場を結びつけ、社会的価値を創出する原動力となる。本発表では、当センターの実践事例と課題を踏まえ、産学連携が医療の持続可能性を高め、患者と社会に還元するための方向性を提示する。オープンで持続的な連携こそ、次世代の医療を形づくる基盤となる。(吉村健祐)。

大学病院が持つ知的アセットを基盤にしたイノベーションへの挑戦

医療の高度化に向けて、大学病院を核とした産学連携への期待は高まっている。本セッションでは、2024 年 10 月に東京医科歯科大学と東京工業大学が統合して誕生した東京科学大学の取組を例に、イノベーション創出活動における「開かれた病院」モデルを紹介する。ここでは、臨床現場を生きた実証フィールドとして公開し、企業・スタートアップ・学際的な研究者等が協働し、医療機器・デジタルヘルス技術のニーズ探索からプロトタイピング、社会実装までを連続したプロセスとして推進している。また大学が有する研究力・教育力・臨床力・ネットワーク力を結集し、社会変革を牽引するイノベーションプラットフォームの一翼を担うことを目指している。(飯田香緒里)

横浜市立大学「よこはまデータサイクル」構想:データで拓く、次世代のウェルビーイング社会

2025 年度、横浜市立大学の「よこはまデータサイクル」構想が、文部科学省の事業「J-PEAKS」として本格始動しました。本構想は、首都圏初のデータサイエンス学部と、ヘルス分野における研究・実践という本学の強みを掛け合わせ、データ駆動で社会全体のヘルスウェルビーイング向上を目指すものです。事業の中核は、健康や暮らしに関わる多様なデータを分析し、人々のウェルビーイングの向上や新サービス創出へ還元する循環型エコシステムの構築であり、その実現に向けて産官学民の連携を強力に推進します。本講演では、本構想の具体的な取り組みと、協業から拓ける未来への展望を議論します。(後藤温)

~登壇者紹介~

吉村 健祐 千葉大学 次世代医療構想センター長・特任教授

千葉大学病院 次世代医療構想センター長・特任教授

2007 年千葉大学医学部卒。東京大学大学院(MPH.)・千葉大学大学院修了(Ph.D)。精神科医・産業医として勤務後、2015 年より3 年間、厚生労働省にて医療政策と政策研究に関わる。

2018 年、千葉大学病院特任講師、千葉県医師確保室所属。2019 年より現職。 専門は医療政策、医療情報、精神保健。精神保健指定医・精神科専門医/指導医・ 労働衛生コンサルタント。日本医療政策学会理事・社会医学系専門医協会幹事。 千葉県市原市医療政策参与。

飯田 香緒里 東京科学大学 医療イノベーション機構長・副学長・教授

2005 年国立大学法人東京医科歯科大学入職、産学連携活動推進及び知財管理、利益相 反マネジメントを含む産学連携コンプライアンス教育及び研究に従事し、2013 年より同大学 教授就任、2020 年より同大学副理事を歴任し、2024 年より現職。

慶應義塾大学非常勤講師・広島大学客員教授・北海道国立大学機構客員教授・国立精神神 経医療研究センター顧問を併任。

委員会活動としては、内閣府健康・医療戦略推進専門調査会委員、文部科学省大学研究力強化部会委員、産業競争力懇談会(COCN)実行委員、バイオインダストリー協会(JBA)運営委員、日本内科学会 COI 委員、日本小児科学会 COI 委員、日本腎臓学会倫理委員・COI 委員等、中央大学法学部卒・博士(学術)

後藤 温 横浜市立大学大学院 医学研究科長·公衆衛生学 教授

2004年に横浜市立大学医学部卒業後、国立国際医療センターレジデント等を経て、University of California, Los Angeles (UCLA) にて、MPH(2010年)・博士課程(疫学,2012年)を修了し、横浜市立大学にて博士課程(医学博士,2013年)修了。その後、国立国際医療センター研究所上級研究員、東京女子医科大学医学部助教、国立がん研究センター 社会と健康研究センター室長等を経て、2020年4月より横浜市立大学大学院データサイエンス研究科ヘルスデータサイエンス専攻教授、2021年7月より同専攻・専攻長、2022年10月より同大学医学部・公衆衛生学教室主任教授(~現在)、2025年4月より同大学医学研究科長、附属病院長補佐を務める。

日本公衆衛生学会代議員、日本疫学会代議員、日本糖尿病学会 糖尿病診療ガイドライン 総括委員、日本医療機能評価機構 診療ガイドライン作成支援部会部会長、日本医療研究 開発機構(AMED) 評価委員、医薬品医療機器総合機構(PMDA)専門委員、等を兼任。

【日中健康産業協会シンポジウム】 10月 19日(日) 13:00-14:30(第1会場)

最先端のデジタル医療・ヘルスケアの応用事例共有

座長: 阿久津 靖子 (一般社団法人日本次世代型先進高齢社会研究機構 代表理事) 高木 俊介(横浜市立大学附属病院 集中治療部 准教授・部長) 高瀬 義昌(医療法人社団 至高会 たかせクリニック 理事長)

~登壇者紹介~

歯科: スマート A I で口腔健康管理を機能させ、業界の新たなサーキットをけん引する Yuyi Dental Tech 日本事業責任者 金澤 慧

北京航空航天大学 ソフトウェア工学卒 日本文部科学省公費留学生として九州大学・山形大学で MOT 修士課程修了、来日 16 年目 Recruit・DeNA にて中国戦略部、事業開発・海外展開戦略を担当 2020 年 Medical Note 海外事業部 0→1 立ち上げ 2022 年 Onemedica(繁康万家)共同創業、中国事業統括責任者 日中健康産業協会 理事長 医学界 特聘日本医療顧問 医療通訳 1 級

リハビリ: AI で走行移動をより自由に Design Director Yang Zheng

現在の職位:デザインディレクター/プロダクトマネージャー、
Xeno Dynamics 株式会社(中国・深圳)
学歴:英国ラフバラー大学 工業デザイン・テクノロジー修士課程修了
専門分野:外骨格およびウェアラブルロボティクス、医療リハビリテーションロボティクス、

医療機器のエンドツーエンド設計・開発

代表的な作品:REGAIT リハビリテーションロボット、BioKneeX 膝装具シリーズ 受賞歴:iF デザイン賞、レッドドット・デザイン賞など、複数の国際的な栄誉を受賞 Yang Zheng は現在、Xeno Dynamics 株式会社(深圳)にてデザインディレクター兼プロダクト マネージャーを務めており、医療およびロボティクス製品の全体的な企画とデザインマネジメントを

担当しています。英国ラフバラー大学にて工業デザイン・テクノロジーの修士号を取得しており、外骨格およびウェアラブルロボティクス、医療リハビリテーションロボティクス、医療機器に関するエンドツーエンドの研究開発マネジメントに豊富な経験を有しています。 Yang Zheng がリードデザイナーを務めた REGAIT リハビリテーションロボットおよび BioKneeX 膝装具シリーズは、臨床適応、ユーザー体験、エンジニアリング実装において顕著な成果を上げており、iF デザイン賞やレッドドット・デザイン賞など、複数の国際的な栄誉を獲得しています。

がん診断: 世界初 AI 超音波乳がんスクリーニング検査ロボット 1000+病院導入済み、 中国の院内医療管理クラウドシステム

iCare365 Technologies 創業者&CEO Joe Zhou

Dr. Zhou は、AI を活用した乳がん超音波スクリーニングにおいて世界的に先進的な企業である、広州に拠点を置く**iCare365 Technologies, Inc.**の創業会長兼 CEO です。

Dr. Zhou が開発したこの AI 搭載乳がん超音波スクリーニングシステムは、中国国家衛生健康委員会および全国愛国衛生運動委員会から高い評価を受け、国内メディアで広く報道されました。また、Intel の公式ウェブサイトにおいて専用の技術ホワイトペーパーを通じて世界的に紹介されています。

Dr. Zhou は AI アルゴリズム研究において 20 年以上の経験を持ち、超音波向けの大規模コンピュータビジョンモデルに関する発明特許を保有しています。

さらに、Dr. Zhou は米国の複数のグローバルフォーチュン 500 企業本社で 10 年以上にわたり研究科学者および技術ディレクターとして勤務し、業界で革新性と世界的影響力を認められた複数のエンタープライズ向けソフトウェアシステムの開発を成功裏に主導しました。これらのソリューションは米国の主要業界誌「Aviation Today」などで取り上げられ、国際的なユーザーに推奨されています。

Dr. Zhou はヘルスケア AI およびクラウドコンピューティング分野で 10 年以上の研究経験を有し、AI を活用した乳がん超音波 スクリーニングに関する論文を発表しています。

現在、Dr. Zhou は以下の役職を務めています:

- 広東省生物医学工学学会 医療情報工学分会 常務委員
- 米国テキサスビジネスアライアンス理事
- 広州スマートヘルスケア産学研イノベーションアライアンス理事
- 広州ハイテク企業協会 バイオ医薬専門家委員会委員
- 広州西帰国学者協会 第6期理事会 医療・バイオ医薬専門委員会委員
- 広東・香港・マカオ臨床医学学会 常務理事

一般社団法人日中健康産業協会は、医療・医薬・ヘルステック領域での学術・技術交流、調査・研修、政策解説、事業化・市場展開をワンストップで支援する越境プラットフォームです。 日本企業の中国展開、中国企業の日本進出を、産学官ネットワークと現地チームで伴走。 WHILLの中国進出支援、Sunstar×吉林大学第一病院の連携、日中医薬企業交流会の共催等の実績があります。

【教育講演 2】 10 月 19 日(日) 13:00-13:50(第 2 会場)

デジタル医学が精神科医療を変える

座長:黒木 春郎(医療法人社団嗣業の会 理事長 こどもとおとなのクリニック パウルーム 院長)

精神科診療はオンライン診療との親和性が高い一方、導入への慎重論も根強かった。

演者らは対面診療に比したオンライン診療の非劣性を証明し、令和 6 年度の診療報酬改定で算定が認められるようになったが、 運用はまだ限定的で普及には課題が残る。現在、更なる規制緩和に向けたエビデンス構築を行っている。

また、精神科医療では診断や重症度評価に用いる生物学的指標に乏しく、臨床や新薬開発の障壁となってきた。これに対し、ウェアラブルデバイスなどを用いた医療機器開発への期待が高まっている。

講演では演者らの研究開発を中心に、デジタル技術活用の現状と将来展望、社会実装の課題について述べる。

~登壇者紹介~

岸本 泰士郎 慶應義塾大学医学部 医科学研究連携推進センター 教授

2000年慶應義塾大学医学部卒業。

慶應義塾大学病院、国家公務員共済組合連合会立川病院、医療法人財団厚生協会大泉病院 を経て、

2009年 The Zucker Hillside Hospital(New York, USA)に入職、

2012年 Donald and Barbara Zucker School of Medicine at Hofstra、

Assistant Professor に就任

2013 年 慶應義塾大学医学部精神·神経科学教室 専任講師、

2021年 医学部ヒルズ未来予防医療・ウェルネス共同研究講座 特任教授、

2025年 医学部医科学研究連携推進センター、健康・医療・社会イノベーションセンター教授。

【東京都医師会シンポジウム】 10 月 19 日(日) 15:00-16:50(第 1 会場)

東京都の地域医療における課題と医師会による医療 DX

座長:目々澤 肇 (医療法人社団茜遥会 目々澤醫院 院長) 高瀬 義昌(医療法人社団 至髙会 たかせクリニック 理事長)

東京総合医療ネットワーク ~全国医療情報プラットフォームとの棲み分け~

厚労省の全国プラットフォーム推進で地域連携が縮小する一方、東京では都と医師会が連携し SSMIX2 基盤の「東京総合医療ネットワーク」を展開している。本システムは PIX-XCA 方式により名寄せ・情報交換を行うことにより大規模サーバーを設置せず持続可能性を確保した。①診療情報提供書 PDF やキー画像の交換、②異なるベンダー間での画像閲覧、③二次救急から三次救急搬送時の事前情報共有を可能にした。医療 DX の FHIR 連携は未だに 3 文書 6 情報と限定的であり、まずは SS-MIX2 の既存システムを活用し都内で広域連携を拡充することが重要である。(目々澤 肇)

「自宅を病室に..板橋区医師会の取り組み(在宅モニタリングと医師看護師連携)」

東京都では後期高齢者や独居高齢者の増加に伴い、医療・介護人材や病床不足が深刻化し、自宅見取り率は全国でも突出して高い。これを受け東京都は2023年、地区医師会に対し24時間診療体制の整備を目的とする「在宅医療推進強化事業」と「医療DX」事業を開始した。板橋区医師会では「診療時間外対応」「在宅患者への質の高い医療」「多職種連携」「情報共有化」を目標にプラン 1・2 を展開。プラン 1 では在宅モニタリングとビデオ通話を活用し見守り体制を構築。プラン 2 では訪問看護師と連携し、かかりつけ医の電話診療やオンライン支援を可能とした。これにより不要な往診・救急受診を減らし、地域資源の効率的活用につながる可能性がある。本シンポジウムではその内容と課題を紹介する。(野村和至)

東京都在宅医療推進強化事業における地区医師会の ICT 利用と共同開発

地域包括ケアネットワークの構築にあたり、在宅医療推進のための整備の一環として、東京都在宅医等相互支援体制構築事業 (24 時間診療体制確保事業)および東京都在宅療養推進基盤整備事業(多職種ネットワーク構築事業)が行われた。特に平成 27 年から 3 年間で行われた後者の事業により、都内の各地区に多職種連携システムの利用が広まった。令和 5 年からは東京都在 宅医療推進強化事業が始まり、各地区で 24 時間診療体制の整備及びそれに関する ICT の利用が進んできている。そしてこれ に用いる ICT システムの新規機能の追加にあたり、各地区で出資する形で共同開発することとなった。本講演ではこれらの経緯 等について述べていきたい。(土屋淳郎)

~ 登壇者紹介~

目々澤肇

<学歴・研究歴・職歴>

1981年3月 獨協医科大学医学部卒業

1987年6月 医学博士(日本医科大学)

1993年7月 Ph.D.(スウェーデン・ルンド大学大学院)

1994年4月 日本医科大学 第二内科学教室 講師

1998年9月 日本医科大学 付属千葉北総病院脳神経センター 副所長

1999年9月 医療法人社団茜遥会 目々澤醫院 院長

2013年6月~2025年6月 公益社団法人 東京都医師会 理事、現参与

2018年4月 日本医科大学脳神経内科 非常勤講師

<主たる研究分野>

東京都における医療ネットワークの構築・脳卒中の病態・予防・治療、慢性頭痛の臨床診療 AIの日常診療への応用・医療 DX

野村 和至 板橋区医師会 医療法人社団野医院 理事長

2001年帝京大学医学部卒。

東京大学医学部附属病院、自治医科大学附属大宮(現:さいたま)医療センターでの内科研修を経て、2003年から虎の門病院内分泌代謝科に勤務。

その後、関東中央病院代謝分泌内科、東京大学老年病科での勤務を経て、

2015 年東京大学大学院加齢医学講座医学博士号取得。同年母が院長を務める医療法人社団野村医院に加入、2017 年同院院長。

2021年2月には同医療法人にて「たかの内科クリニック」を開業、同年11月同医療法人理事長就任。

東京大学大学院医学系研究科老年病学の非常勤講師や東京都医師会の医療情報検討委員会委員長、日本医師会の未来医師会ビジョン委員会、

AI の臨床利用に関する検討委員会、日本老年医学会の保険診療小委員会委員長などを 務める。糖尿病専門医(評議員)、老年科専門医(代議員)

土屋 淳郎 東京都医師会理事 医療法人社団創成会 土屋医院 院長

H07年3月昭和大学医学部卒業

H11年3月昭和大学大学院 医学研究科 博士課程修了

H12年5月太田熱海病院放射線科部長

H19年4月太田熱海病院内科部長

H24年4月 医療法人社団創成会土屋医院 院長

H30年7月全国医療介護連携ネットワーク研究会 会長

R05年6月 豊島区医師会 会長

R07年6月 東京都医師会 理事(医療情報担当)

香取 照幸

一般社団法人未来研究所臥龍 代表理事、

兵庫県立大学大学院 社会科学専攻科 経営専門職専攻 特任教授者

一般社団法人未来研究所臥龍代表理事/兵庫県立大学大学院社会科学研究科特任教授。 東京都出身。

1980年東京大学法学部卒。同年厚生省(現·厚生労働省)入省。

在仏 OECD 事務局研究員、高齢者介護対策本部事務局次長、内閣参事官(小泉純一郎総理大臣官邸)、政策統括官、内閣官房内閣審議官、年金局長。この間介護保険法創設や社会保障・税一体改革等を担当。2016年退官。

2017 年在アゼルバイジャン共和国駐箚日本国特命全権大使、

2020 年上智大学人間科学部教授。主著『介護保険制度史』(共著)『教養としての社会保障』 『民主主義のための社会保障』『社会保障論 I 』『高齢者福祉論』(いずれも東洋経済新報社)。 日本地域包括ケア学会評議員、日米医学医療交流財団理事、全世代型社会保障構築会議 構成員。 【シンポジウム 6】 10 月 19 日(日) 15:00-16:15(第2会場)

DX で支える災害時の医療・ヘルスケア

座長:宮川 祥子(慶應義塾大学 看護医療学部 准教授)

災害医療の司令塔:保健医療福祉調整本部での超急性期・急性期対応とDX

令和6年能登半島地震では、石川県保健医療福祉調整本部内に、日本医師会災害医療チーム(JMAT)はJMAT 調整本部を設置し、急性期から慢性期まで災害医療の司令塔として活動し、多職種・多機関連携を行った。1日延べ人数で1万2千人を超える運用を行ったが、その実際の運用と課題を示すとともに、情報の断絶や引き継ぎ不足を克服するために施設評価支援システム(FASYS)を用いた情報集約・可視化や、活動調整におけるデジタル基盤の有効性を紹介する。今後の国難級災害に備え、災害医療の司令塔におけるDX活用が不可欠であるがいくつかの課題が残る。(秋冨慎司)

被災者の生活再建に寄り添う医療支援 ~地域のヘルスニーズとデジタル技術の活用~

被災地における急速な高齢化と生産人口減少は、医療・ケア専門職不足を深刻化させ、住民の生命と生活を揺るがす社会的課題となる。本発表では、その解決とフェイズフリーなヘルスケア継続に向けた DX 活用を報告する。能登半島地震後に導入した D to P with N 型オンライン診療は通院困難者の重症化回避や遠隔家族の診療参加を可能にし、BCP 策としての有用性を示した。また長野県茅野市での心不全患者へのテレナーシングは、退院直後のブルネラブル期にセルフモニタリングを促し再入院予防に寄与するとともに、規制緩和や看護師の新たな働き方改革へと展開している。これらは地域医療・ケアの持続性を高め、安心して暮らせる社会基盤を再構築に繋がる。(山岸暁美)

~登壇者紹介~

秋冨 慎司 金沢医科大学救急医学講座教授

兵庫医科大学卒業後、千里救命救急センターでチーフレジデント、済生会滋賀県病院、東京大学、岩手医科大学で救急・集中治療及び外科に所属、防衛医科大学校 准教授を経て現職。

2024年の能登半島地震では、日本医師会からの派遣で石川県医師会の参与として、全国から派遣されたJMAT活動の支援にあたった。2025年3月より現職。

現在、内閣府や総務省の防災関連の委員のみならず、日本医師会の救急災害医療対策 委員会の委員として、また東北大学客員教授や、東京大学や東京大学の客員研究員とし て危機管理の研究、助言も行い、サイバーセキュリティ対策関連やコロナ渦での対応への 活動をしている。2020年2月には日本医師会総合政策研究機構の研究所長(横倉義 武日本医師会長)の医療アドバイザーとして、未知のウイルスであった新型コロナウイルス 感染症対応のため、対新型コロナウイルス感染症特別医療支援タスクフォースの立ち上げ などを行った。

山岸 暁美 慶應義塾大学医学部衛生学公衆衛生学教室 / 一般社団法人コミュニティヘルス研究機構

日赤医療センター勤務後、渡豪し小児病院/総合病院に勤務。帰国後、2000年~訪問看護に従事。07年~厚労省戦略研究緩和ケア普及のための地域介入研究 OPTIM-Study プロジェクトマネジャー/東京大学医学部客員研究員 09年~厚労省入省、在宅医療専門官として、診療報酬・介護報酬同時改定、東日本大震災対応、医療計画指針策定、在宅医療連携拠点事業などに携わる。16年8月~現職+訪問看護:週1-2回/週。DC-CAT(Disaster community- Care Assistance team)代表

日本在宅救急医学会理事・学術誌編集委員長/日本在宅医療連合学会特任理事/厚労省医政局在宅医療提供機関のBCP 策定専門家委員会委員長/内閣府デジタル田園健康特区(長野県茅野市)アドバイザー / 社会福祉法人聖隷事業団評議委員 /青森県立中央病院看護部アドバイザー / 岩手県気仙郡住田町ヘルスケアリフォームアドバイザー/18~24年度倉敷市連合医師会顧問、18~22年神戸市医師会未来医療検討委員会委員/20年度厚労省特別研究「在宅医療機関のBCP策定に係る研究」研究代表者 / 20年度厚労省「保健所の在り方検討委員会」委員/20~24年度~厚労省医政局事業 E-Field HOME 研修タスクフォース長等、政策と研究と現場を繋ぐタスクを多数務める。

■10月18日(土) 一般演題

【AI活用】 10:00-11:30 (第3会場)

座長:渡邊祐介(北海道大学病院 臨床研究開発センター長補佐・特任講師)

上田悠理(株式会社 Confie 代表取締役社長、Healthtech Summit 統括ディレクター)

10:00-10:15

AI 模擬患者の日米英比較

演者:伊藤 美奈子(早稲田大学 東京女子大学 共同大学院 先端生命医科学専攻(宮田研究室) 一般社団法人日本医療面接訓練評価センター 理事)

In Japan, passing the Common Achievement Test, which consists of the Pre-Clinical Clerkship Objective Structured Clinical Examination (Pre-CC OSCE) and Computer-Based Testing (CBT), has become a mandatory public examination requirement for students to proceed to clinical clerkships.

Medical interviews in the OSCE are now conducted using standardized simulated patients certified by the Japan Council for Medical Education (CATO), a public interest incorporated association responsible for the implementation and evaluation of the Common Achievement Test, leading to stricter assessment. Various initiatives have been undertaken by universities for medical interviews, and among these, AI simulated patients have begun to be utilized. In the United States and the United Kingdom, AI simulated patients are already being used in various universities, and efforts have also commenced in Japan. This report aims to investigate and comparatively analyze the current utilization of AI simulated patients in Japan, the United States, and the United Kingdom, and to consider the significance of leveraging AI simulated patients in Japan in the future.

10:15-10:30

YOLO11x-seg を用いた汎用性の高い神経膠腫セグメンテーション AI の検討

演者:竹田 悠馬(新潟医療福祉大学大学院 医療福祉学研究科)

Although AI for brain tumor segmentation using MRI images has progressed, a decline in accuracy during external validation remains a challenge. This study aimed to evaluate the feasibility of developing a versatile brain tumor segmentation AI using YOLO11x-seg, a pre-trained model using a large dataset (COCO). Five-fold cross validation was performed on 835 preoperative glioma MRI images (280 cases) from six Japanese institutions, and the model was fine-tuned. We used TCGA dataset (262 images (77cases)) in the external test. The evaluation metrics were the tumor detection rate and the Dice coefficient. For images with two or more detections, only the result with the highest confidence value was included in the calculation. The Dice coefficient was calculated by excluding images with no tumors detected and calculating the average value. The tumor detection rate and the Dice coefficient were

98.0% and 0.86, respectively, and 97.6% and 0.89 in the external test. Therefore, we have successfully developed the versatile glioma segmentation AI, and YOLO11x-seg demonstrated high adaptability and versatility.

10:30-10:45

術前 MRI 画像を用いた深層学習による低悪性度神経膠腫の分類手法の検討

演者: 菅 将瑛(新潟医療福祉大学大学院 医療福祉学研究科)

Adult diffuse gliomas are classified into glioblastoma, astrocytoma, and oligodendroglioma based on IDH mutation and lp/19q codeletion status, which determine treatment strategies. Currently, this classification requires biopsy via craniotomy, which carries risk of complications. Therefore, non-invasive classification using preoperative MRI could support clinical decision-making. This study aimed to evaluate two deep learning-based approaches: stepwise classification, in which IDH and lp/19q status are predicted separately and then combined into three types, and direct three-class classification from preoperative MRI. We analyzed MRI from 280 low-grade glioma cases (835 images) collected from six domestic facilities. Features extracted using Convolutional Neural Network (CNN) and Vision Transformer (ViT) were applied to predict IDH and lp/19q status, and to classify gliomas into three-class. The stepwise method achieved 79.64% accuracy, while the direct three-class classification method achieved 76.43%. These results suggest the stepwise approach provides higher accuracy for low-grade glioma classification.

10:45-11:00

Low-Rank Adaptation を用いた Vision Language Model によるマンモグラムの放射線科レポート自動作成の初期検討

演者:甲斐 千遥 (藤田医科大学医療科学部研究推進ユニット知能情報工学分野)

Vision Language Model (VLM) have been actively studied in the medical imaging, and their potential for standardizing radiology reports and improving physicians' workflow is promising. Therefore, as a preliminary study toward the realization of an automatic radiology report generation for mammograms, this study aimed to develop a system for automatic mammogram report generation by VLM using Low-Rank Adaptation (LoRA). We used 429 images (237 cases) from a public dataset consisting of mammograms and their reports. We prepared question prompts and answers, and performed LoRA tuning on Qwen2.5 (7B) model. To address BIRADS cases bias, we also conducted data augmentation experiments. For qualitative evaluation, we evaluated BLEU and ROUGE-L, and for system evaluation, we evaluated BIRADS agreement rate. Implementation of LoRA tuning improved the qualitative evaluation by 0.415 BLUE and 0.514 ROUGE-L F1, and the system evaluation by 15.9%. In addition, augmentation also showed an improvement in accuracy. Although issues remain in terms of clinical use, the results suggest that this method has potential for automatic mammogram report generation.

11:00-11:15

若手医師が牽引する医療現場変革:

生成 AI 使用率 1 割から 8 割への半年間プログラム

演者:岡本 賢(国立成育医療研究センター 教育研修センター 小児科レジデント)

【背景】医療現場のデジタル活用は他業界に比べ著しく遅れており、生成 AI の急速な普及に対応する教育体制整備が急務である。

【目的】当院小児科後期研修医 40 名を対象に、若手医師が主体となり安全かつ段階的に生成 AI を現場実装する教育プログラムを開発・実施した。

【方法】2025年4月~8月に計5回の集合研修、個別相談、スモールグループ実践を行い、継続的な相互学習を基盤としたピアラーニング体制を構築した。

【結果】半年で AI 使用率は 1 割から 8 割に上昇し、カンファレンス記録や臨床議論で活用が常態化した。

【結論】今回当院で行った、若手主体の再現可能で持続的な現場変革は、全国的にも応用可能であると考えられた。

11:15-11:30

デジタルバイオマーカーに基づく AI の検討

リウマチ及び術後管理のデジタルバイオマーカーを事例に

演者:湊 和修(株式会社テックドクター 代表取締役)

ウェアラブルデバイスやスマートフォンから得られる連続的非構造データに基づくデジタルバイオマーカー(dBM)は、病院外における疾患管理の新たな可能性を示している。今回は関節リウマチ患者および手術後患者を対象に、疾患活動性や回復経過の予測精度を検討した内容を報告する。また、dBM を活用して AI が患者をサポートし、医師との対話を補完することで、より効果的なコミュニケーションと個別化医療の実現に資する可能性を提示する。

【情報処理·解析】 13:00~14:30 (第3会場)

座長:水島洋(昭和医科大学総合情報管理センター客員教授、

東京都健康長寿医療センター健康長寿イノベーションセンターセンター長補佐)

藤田卓仙(公益財団法人 東京財団政策研究所 主席研究員)

13:00-13:15

効率的なデータ転送を目指した Color Fuzzing×QR® の取り組み

演者:中村 明央(昭和医科大学総合情報管理センター)

当研究では、閉域環境下での医療データ転送を目的に Fuzzing×QR®を開発し、従来 Bluetooth 通信に比べテキストデータ 転送速度を大幅に改善してきた。しかし、バイナリデータ転送容量に課題が残っていた。そこで新たに Color Fuzzing×QR®を 開発した。

本手法は従来白黒の二次元バーコードに赤・緑・青(RGB)の三色を導入し、データを三分割して符号化、合成することで転送容量を3 倍に拡張可能とした。読み取りは逆手順により復号し、効率的かつ簡易なデータ交換を実現する。本方式は医療現場での大容量データ伝送を可能にし、非ネットワーク環境下における情報流通の新たな選択肢を提示する。

13:15-13:30

炎症性腸疾患(IBD)患者における Shared Decision Making(SDM)関与 因子の探索的分析―Web ベース患者調査による検討

演者: 豊島 久雄(日本経済大学大学院 ファーマシーマネジメント研究所)

Shared decision making (SDM) is central in chronic disease management. This study using a web-based patient survey examined factors influencing involvement in SDM among IBD patients. A multiple regression model analysis revealed that number of treatment options ($\beta=0.191$), complications ($\beta=0.128$), trust in the physician ($\beta=0.119$), number of trusted healthcare professionals ($\beta=0.099$), and availability of supportive communities ($\beta=0.068$) significantly impacted SDM engagement. Subgroup analysis showed that UC patients are influenced by number of treatment options, while CD patients emphasize trusted healthcare professionals. These findings highlight the necessity of tailored SDM support. Additionally, our first report in IT Healthcare (Vol. 19, No. 2) demonstrated feasibility of using the MHC-SF-J via web-based surveys in IBD patients, supporting the utility of digital methods for capturing subjective well-being. Overall, these results underscore the importance of multi-option presentation and trust-building in facilitating SDM in IBD care.

13:30-13:45

レセプトデータを用いた高額医療費患者の5年間医療費推移パターンの類型化

演者:松尾 陽子(慶應義塾大学大学院健康マネジメント研究科)

目的:高額医療費患者の5年間の医療費推移パターンで類型化し、各々の特徴を明らかにする。

方法: JMDC データベースより 2017 年度医療費上位 5%の患者 (N=188,043) を対象に以後 5 年間の月次医療費の推移をk-means 法で分析し、15 クラスターを抽出し 4 型に分類した。

結果:増加型は血液疾患や慢性腎臓病等で、医療費が上昇傾向を示した。緩やかなピーク型は悪性新生物の有病率が高く、2017 年度をピークに減少した。急峻なピーク型は心血管・周産期・婦人科疾患等で一時的に急増した。緩やかな減少型は最大の集団で2017 年度後に減少した。

考察:高額医療費患者には異なる推移パターンがある。各々の傷病名・診療行為等の検討は、高額療養費制度の議論にも寄与し 得る。

13:45-14:00

特定健診・レセプトデータによる労働者の生活習慣の類型化と睡眠改善対策

演者:岸 知輝(杏林大学保健学部看護学科)

目的:労働者の仕事の質や安全管理の向上に重要な睡眠改善対策への提言を行うために、労働者を睡眠休養感の有無と生活習慣で類型化し、各類型の特徴を明らかにする。

方法:全国土木建築国民健康保険組合の特定健診・レセプトデータを用いた。40~59歳の男性労働者約5万人について、睡眠休養感の有無、飲酒頻度・量、喫煙・運動習慣の回答を用いて潜在クラス分析を行い、更に横断・縦断的に各類型の特徴を検討した。

結果:「肥満・多量飲酒型」、「毎日飲酒・喫煙型」などの類型を認めた。睡眠休養感の不調の程度と不調の要因は、生活習慣等の類型によって異なることが示唆された。

考察:各類型の特徴に応じた睡眠改善対策を検討する必要がある。

13:45-14:00

高齢労働者のレセプトデータに Electronic Frailty Index(eFI)を適用したフレイル傾向の検討

演者:佐藤智絵(慶應義塾大学大学院健康マネジメント研究科)

目的:少子高齢化に伴い高年齢労働者が増えているが、安全配慮の観点からフレイル対策は重要である。そこで、レセプト情報による eFI でフレイル傾向を検討した。

方法: 全国土木建築国民健康保険組合の65歳以上の加入者5956人のレセプトデータに、英国で開発されたeFIを適用して、そのスコアからフレイル傾向を推定した。

結果: 65~69 歳では中等度のフレイルが 11.2%、高度のフレイルが 2.7%、70~75 歳では順に 13.6%、3.5%に相当した。また、被保険者(本人)では、11.5%、2.5%、被扶養者(家族)では、13.3%、4.4%であった。

考察:レセプトデータを活用した評価と生活習慣等の要因分析は高齢労働者のリスクの層別化と健康管理に有用と考えられる。

【デジタルセンシング・モニタリング】 14:30~16:00 (第3会場)

座長:藤本修平(静岡社会健康医学大学院大学 准教授、

京都大学大学院医学研究科 健康情報学分野 客員研究員)

湊 和修 (株式会社テックドクター 代表取締役)

14:30-14:45

電力データを用いた生活周期の解析と予測モデル構築のための基礎検討

演者:手塚 麻実(奈良女子大学大学院)

日本は超高齢社会を迎え医療費や孤独死の割合等も増大しつつあることから、高齢者の健康状態や生活状況を正しく把握する 事は重要な課題である。しかし、活用を期待されてきたウェアラブルデバイスは着装者に負担をかけやすく、十分普及しているとは いいがたい。そこで本研究では、電力計をスマート化する IoT デバイスを用い、各種家電製品が消費する電力使用量のビッグデ ータに基づいて、生活リズムや家電製品の使用パターンの抽出を試みた。その結果、日常の活動量低下や安定的な生活パターン からの逸脱を可視化・発見できる可能性が示唆された。今後、生活習慣の乱れや体調変化を早期に検知し、健康状態のモニタリン グや病気の早期発見可能な予測モデルを構築することで、高齢者の暮らしを見守る技術の確立に取り組みたい。

14:45-15:00

スマートデバイスによる労働者のリフレッシュ効果の評価

演者:兼田 悠(星薬科大学 医療データサイエンス研究室博士課程)

労働者の安全と健康を犠牲にすることなく期待される生産性を維持するためには、労働者の身体的な負荷だけでなく、心理的負荷を可視化し、許容限界内で管理することが重要である。我々はこれまでに、複数の職業の労働者にスマートデバイスを装着することにより、心拍変動から自律神経のバランスを推定するストレス指標である LF/HF を用いて労働作業中の心理的ストレスの可視化を進めてきた。しかし、労働者の心理的負荷は労働作業のみに依存するわけではなく、労働時間外や休日に適切なリフレッシュが労働作業中の心理的負荷に影響している可能性がある。そのため、リフレッシュ行動中の LF/HF を含むバイタルサインのデータを取得することは有用である。そこで我々はパイロットテストとして、動的なリフレッシュであるファンダイビング、静的なリフレッシュであるサウナ入浴中の LF/HF を含むバイタルサインを測定した。今回、リフレッシュ行動中のバイタルサインの特徴を解析した結果を報告し、今後の労働者の心理的負荷を軽減するための研究に対する基礎となる知見を提供する。

15:00-15:15

新たな計測技術としての Wi-Fi センシングによる睡眠モニタリング

演者:木暮 祐一(名桜大学人間健康学部健康情報学科 教授/博士(工学)

Wi-Fi sensing utilizes Channel State Information (CSI), which represents the transmission channel between transmitting and receiving antennas, to account for the effects of delayed waves caused by Orthogonal Frequency Division Multiplexing (OFDM) and multipath propagation from multiple directions due to Multiple-Input and Multiple-Output (MIMO). By measuring ripples generated through reflections from moving people and objects, Wi-Fi sensing enables the detection of human presence and activity. Applications of Wi-Fi sensing include monitoring infants and elderly individuals, detecting intruders, and identifying children left unattended in vehicles. Several commercial services have already been launched in Japan. In this study, we investigated how accurately Wi-Fi sensing can detect sleep. The results showed that it was able to detect bedtimes and wake-up times with a reasonable degree of accuracy.

15:15-15:30

WLQとウェアラブル生理指標に基づく職場での抑うつ傾向推定

演者:鈴木 宏明(東京都立大学大学院 電子情報システム工学域 修士課程2年)

職場における抑うつの早期発見は早期回復と生産性低下防止に不可欠である。本研究では全 25 項目からなる業務遂行能力低下評価指標(WLQ-25)とウェアラブル端末の行動生理データを統合し、実用的な抑うつ傾向の推定を目的とした。20 名のオフィスワーカーが参加、WLQ-25 と抑うつ傾向の評価指標である PHQ-9 を回答、24 時間計測したウェアラブル端末得られた客観データを用いて回帰分析を行った。結果、短縮版 WLQ-25(WLQ-8)と総睡眠時間、起床後の 60 分間の平均心拍数を組み合わせたモデルで、自由度調整済決定係数が 0.68 と、WLQ-8 単独使用時の 0.38 と比べ、PHQ-9 の予測精度が大幅に向上した。

15:30-15:45

超高齢社会に対応する ICT 活用フレイル予防サービスの開発と実践

— ヘルスケアアプリ『脳にいいアプリ』によるエイジテック・PHR モデル —

演者:遠山 陽介(株式会社ベスプラ代表取締役)

超高齢社会に向け、自治体と連携したフレイル予防 DX の実装と効果を報告する。『脳にいいアプリ』は歩行・脳トレ・食事/バイタル・服薬・AI 相談を統合し、複合的な健康活動機能にて自己管理を支援。健康ポイントと連動し、高い継続率を実現。八王子市等の実装で歩行速度増・血圧/BMI 改善、浜松市で認知機能向上を確認。ボランティア等の社会参加を促す機能も搭載。ICT 技術により参加確認~集計・支払いを自動化し、自治体側の事務負荷を大幅削減。官民連携プラットフォームによりポイント原資を企業協賛等で確保し、持続可能な地域実装モデルとして社会実装中。導入自治体は 26 団体、ユーザー数は 18 万人。(2025 年 9 月)

15:45-16:00

周術期化学療法における QOL 変化のデジタル評価と有害事象管理への応用

演者:小川 千晶(国立病院機構東京医療センター)

【背景】

乳がん周術期化学療法では、悪心・嘔吐や末梢神経障害など多様な有害事象が発現し、QOL や治療完遂率の低下を招くことがある。EQ-5D-5L は国際的に標準化された健康関連 QOL 評価指標であり、患者報告アウトカム(PRO)の定量化に有用とされるが、本邦における周術期化学療法患者の縦断的評価の報告は少ない。

【目的】

EQ-5D-5L 評価アプリケーションを用いて、周術期化学療法施行患者の QOL 変化を治療前から終了後まで縦断的に把握し、 有害事象発現との関連を探索する。

【取り組み】

当院では前向き観察研究として、本アプリを用いた評価を導入し、治療各サイクルおよび術前後にデータを収集している。本発表では、システム導入の経緯、評価スケジュール、運用上の工夫を紹介する。

【意義】

本取り組みにより、QOL 低下と有害事象の発現時期を時系列で可視化でき、支持療法介入の至適タイミングを明確化できる可能性がある。得られた知見は、個別化支持療法の構築や治療継続率向上に資する科学的根拠となると考えられる。

■10月19日(日)

【オンライン診療】 10:00-11:00 (第3会場)

座長:野村 和至(板橋区医師会 医療法人社団野村医院 理事長) 日下 祐(市立青梅総合医療センター呼吸器内科医長)

10:00-10:15

LINE 連携オンライン診療システム「march」による医療 DX の実現と

患者エンゲージメント向上効果の検証

演者:萩田 朋史(株式会社 Wrusty)

1. はじめに

医療 DX 推進において、デジタルデバイド解消と業務効率化は重要課題である。LINE 連携オンライン診療システム「march」の導入効果を検証した。利益相反(COI)の開示:発表者に開示すべき利益相反はない。

2.概要

導入医療機関15施設を対象に、導入前後の患者数、リピート率、売上、満足度を比較検討した。

3.結果

新規患者数 20%増加、リピート率 30%向上、売上 6 か月で 4 倍増加、予約キャンセル率 52%減少を認めた。患者満足度は有意に改善し、97%の施設が継続使用を希望した。

4.結論

march は既存アプリ不要でデジタルデバイドを解消し、患者満足度向上と医療機関経営改善を同時実現する有効な医療 DX ソリューションである。

10:15-10:30

3ヶ所以上を繋ぐ遠隔連携診療のあり方の検討

演者:竹内 公一(千葉県松戸保健所・松戸健康福祉センター)

患者の在所をふくめた 3 カ所以上を繋ぐ診療は、情報通信技術の活用により実現可能である。従来、2 カ所を繋ぐ遠隔診療の制度整備が保険診療制度では進められていて、D to P のオンライン診療をはじめ、遠隔連携診療である D to P with D や D to P with N が行われている。3 カ所以上を繋ぐ診療には、複数の疾病に対する診療を、個々の診療を単純に追加していくのではなく、最適化のための調整を行うことができるなど、メリットがある一方で、セキュリティや個々の医師の責任範囲、報酬のあり方という課題がある。3ヶ所以上を繋ぐ診療を実施するために必要となる課題について検討する。

10:30-10:45

救急搬送における軽傷患者数を減らすためのオンライン診療活用に関する検討 ~#7119 の分析データを参考にして~

演者:福島 直央(静岡大学情報学部・ファストドクター株式会社)

An analysis of 7,668 consultation cases from October 2023 to March 2024 within the #7119 data implemented in Yamaguchi Prefecture was conducted from an emergency physician's perspective. This confirmed the status of overtriage and examined methods to reduce such over-triage cases. Over-triage cases included 46 instances of emergency call advice, 1,001 instances of early visit advice, and 1,515 instances of next-day visit advice. It was also revealed that many of these over-triage cases could have been handled via online medical consultations.

10:45-11:00

地域に根ざしたオンライン診療の確立~栃木オンライン診療研究会の取り組み~

演者:大林 克巳(大林クリニック 院長)

オンライン診療は、安定した患者の管理や専門性の高い診療、一次救急対応、美容やダイエット薬の販売という3つの形態に大別される傾向にある。オンライン診療の適正な普及には、従来のオンライン診療と、地域の主治医と一次救急に対応するオンライン診療インフラの融合が不可欠である。一方で、美容やダイエット薬の販売など、問題視される場合には「オンライン診療」の名称を使用させない規制も必要だと考える。

私たちは 2020 年に栃木オンライン診療研究会を設立、地域に最適なオンライン診療のあり方を模索し、その普及に尽力している。 本発表では、その現状について報告したい。

【遠隔医療】13:00-14:30 (第3会場)

座長:涌水 理恵(筑波大学医学医療系保健医療学域 発達支援看護学 准教授) 鴻池 大介(ヘルスケアテクノロジーズ株式会社 代表取締役社長 兼 CEO)

13:00-13:15

小児領域の遠隔看護の実態と課題に関する文献検討

演者:西垣 佳織(聖路加国際大学大学院看護学研究科 小児看護学)

目的:子どもと家族には、その発達段階と健康問題の状況に応じたセルフケア獲得への支援が重要である。テレナーシングは ICT を用いた遠隔コミュニケーションによる看護活動であり、生活の場にいながら低コストで継続的支援を受けることを可能にする。本研究の目的は、プライマリケアにおける小児領域のテレナーシングの実態と課題を明らかにすることである。

方法:医学中央雑誌 Web 版(以下、医中誌)、および Pubmed を用いて 2025 年 7 月までに発表された文献を対象にした。医中誌では、"遠隔看護"で検索し、年齢層を $0\sim18$ 歳まで、原著論文を採択した。Pubmed では、"telenurs*"で検索し、年齢層を $0\sim18$ 歳までの Case Reports, Clinical Trial, Meta-Analysis, Randomized Controlled Trial, Systematic Review を採択した。選定した対象文献からテレナーシングについて記載されている部分を抽出し、質的内容分析を行った。

結果:タイトルおよび抄録を確認し、子どもと家族を対象としたテレナーシングに関する論文合計 7 件(医中誌 1 件, Pubmed6 件・5 か国で実施)を抽出した。研究方法は観察研究、準実験研究、ランダム化比較試験等であった。テレナーシングによる介入対象の子どもは乳児~思春期であり、てんかん、炎症性リウマチ性疾患、発熱などの健康問題を有していた。介入内容は電話、テキストメッセージを用いていた。アウトカムは保護者の不安、セルフエフィカシー、満足度、子どもの症状等であり、一定の効果が報告された。

考察:テレナーシングの検証は少ないが、各施設の実情に応じた検証が実施されており、保護者の不安や子どもの症状コントロールにも効果があった。今後は、研究の蓄積によりテレナーシングの方策を明確にすることが求められる。

本研究は、科学研究費補助金 基盤研究(B)(課題番号: 23K21559)「障害児のセルフケアを促進するテレナーシングシステム構築と検証」(研究代表者:西垣佳織)の助成を受けて実施した。

13:15-13:30

遠隔教育・医療・看護をはじめとする ICT の活用が日本人の生活や受診、学習、 就業、育児等に及ぼす影響の国内文献レビュー

演者:川崎 公暉(筑波大学大学院 博士前期課程人間総合科学学術院 人間総合科学研究群 看護科学学位プログラム 発達支援看護学研究室 M2)

2019 年以降の新型コロナウイルス感染症(COVID-19)の拡大により、日本では長期的な自粛生活が常態化し、外出制限や交流の減少に伴う精神的ストレスの増加が報告されている。

一方で、オンライン会議や遠隔教育、遠隔医療など ICT(情報通信技術)の活用が急速に普及し、心理的支援や社会的つながりの補完手段として注目されてきた。本研究は、COVID-19 下の日本における ICT 活用が生活や受診、学習、就業、育児等に及ぼす影響について、2020 年からの国内文献を通じて明らかにすることを目的とした。Google Scholar および医学中央雑誌 Webを用いて「遠隔」「ICT」「ストレス軽減」「心理的ストレス」をキーワードに検索し、2020~2025 年に発表された査読付き文献・原著論文を対象とした。PRISMA 2020 に準じたスクリーニングの結果、18 件を採択した。対象としては学生・医療従事者・患者・一般就労者が含まれ、介入方法では遠隔教育、遠隔医療、デバイスを活用した看護などがみられた。それを実践することで孤独感や抑うつ、ストレス反応の軽減、自己効力感やレジリエンスの向上が確認された。一方で、学年や年齢、職業、勤務形態などの特性によって効果に差が生じることも報告され、ICT 利用には格差が存在することが明らかとなった。以上より、ICT 活用は COVID-19 下におけるストレス軽減に一定の効果を有することが示唆されたが、その効果は対象者の属性や状況によって変化する。今後は、誰もが利用しやすい ICT 環境の整備とともに、対象ごとの特性に応じた介入モデルの構築と実証的検証が求められる。

13:30-13:45

遠隔医療、デジタル医療に対する学術的研究の構造的取り組みの展望

演者:長谷川 高志(特定非営利活動法人日本遠隔医療協会)

デジタル医療は特定臨床域の医学ではないため、学術的研究活動が成立しにくく、専門技術の蓄積や進化の目標設定も難しく、研究者の育成も容易ではなかった。長年の検討により、筆者は社会的な技術評価尺度、医療アクセスの評価、診療情報のデジタル表現や共有・流通・記録方式などが専門的研究対象と考えるようになった。また諸制度と関わるレギュレートリーサイエンスの一種である。表面的には遠隔医療、地域医療連携、サイバーセキュリティ、SaMD など様々な用語で呼ばれるが、背面では新たな社会医学の骨格が育ちつつあり、長年、遠隔医療の発展を見守った筆者の視点で学術的視点を紹介する。

13:45-14:00

在宅医療・介護への新しい視点

「チームによる双方向通信機能+見守りシステムを用いた在宅ケア」

演者:尾林和子(社会福祉法人 東京聖新会 理事)

本研究は、センサーと遠隔通信機器を活用した在宅介護モデルの可能性を検証した概念実証である。介護専門職・家族・高齢者が協働し、受動的遠隔モニタリング(PRM)と双方向コミュニケーション機能を備えたシステムを 12 週間運用。対象は重度障害者 1 名、認知症高齢者 4 名、家族介護者、介護専門職 15 名。技術的課題はあったが、システム性能は概ね良好で、予防的・双方向的特性が好評だった。PRM に適合したチームベースのケアの重要性も示され、限られた資源下での個人中心医療ケアの需要に対応するには、補助技術(AT)の統合が今後さらに求められる。本研究は、生活の質向上に向けた AT の可能性と関係者の協働の意義を示している。利益相反はない。

14:00-14:15

アフリカ医療への デジタル・イノベーション導入

演者:信吉 正治(長崎大学熱帯医学研究所臨床感染症学分野、NPO Redwood Mission 理事長)

マラウイの妊産婦死亡率は 225/10 万である。農村部の三医療施設を選定した。2024 年度の妊婦健診(ANC)受診者数は 12,844 人、4 回以上の ANC 受診率は 43.4%、妊娠初期の ANC 受診率は 9.2%であった。携帯電話にプローブを接続した 腹部エコーシステム SPAQ を導入し4 回以上の ANC 受診率、妊娠初期の ANC 受診率、救命率を上げることを目指す。SPAQ は、看護士が無医村に携帯し妊婦腹部エコーを行う。異常があれば、インターネットで、医師と画像を共有する。緊急性が高ければ、 緊急手術を施行する。受診率と救命率をあげる。コンゴ民主共和国での 1,014 名の予備健診では、救命率は 2.8% であった。

SOMPO Light Vorte:株式会社 https://tytocare.lightvortex.com/

The Best Remote Primary Care atytocare

身近で、何でも相談に乗ってもらえる 総合的な医療"プライマリ・ケア"を TytoCareでリモート&高品質に

医療アクセスと 医療リソースの適迫 遠隔医療だから どこにいても診察できる

ビデオ連話では 欠ける医療の質 Ty to Care の検査機能で 診療の質を高くできる

TytoCareは オンライン診療の医療機器

TytoCareは聴診器・体温計・耳鏡・カメラを備えた医療機器です。 "オンライン診療"と"医師へのデータ共有"で医療をサポートします。

販売名:TytoCare診療支援キット 一般的名称:電子聴診器、皮膚赤外線体温計、耳服明器、舌圧子 腹証番号:305AIBZX00014000

・医師とビデオ通話で診察 ・記録したデータを医師に送信して 医師の空音時間に診てもらう

わかりやすいガイダンス 表示で、 初めてでも使いやすい

デバイスのアタッチメントを付け変えて 戦や節など様々な都位を診察

耳の検査

牌の絵巻

心臓の結構

屋の絵巻

心拍教

CHIST

皮膚の核腫

BEREICH GE

Healthcare Service Provider くすりの一生から、ひとの一生まで。

生を受けたその人が、その人らしく一生をまっとうできるよう、 健康、未病・予防、予後といった、人生の各ステージにおいて 医療関連施設および医療従事者を総合的に支援してまいります。

シミックヘルスケア・インスティテュート株式会社

東京都港区芝浦一丁目1番1号 BLUE FRONT SHIBAURA TOWER S TEL: 0120-86-4329 (代表) Web: https://www.cmic-hci.com/

漢方製剤にとって「良質」とは何か。その答えのひとつが「均質」である、とツムラは考えます。自然由来がゆえに、ひとつひとつに個性がある生薬。漢方製剤にとって、その成分のばらつきを抑え、一定に保つことが「良質」である。そう考える私たちは、栽培から製造にいたるすべてのプロセスで、自然由来の成分のばらつきを抑える技術を追求。これからもあるべき「ツムラ品質」を進化させ続けます。現代を生きる人々の健やかな毎日のために。自然と健康を科学する、漢方のツムラです。

良質。均質。ツムラ品質。

 株式会社ツムラ
 https://www.tsumura.co.jp/
 資料請求・お問合せは、お客様相談窓口まで。

 医療関係者の皆様 tel.0120-329-970
 患者様・一般のお客様 tel.0120-329-930
 受付時間 9:00~17:30 (土・日・祝日は除く)
 2021年4月制作 (審)

この社会の誰もが

その人らしく

笑顔ある日々を

過ごせることを目指して。

アッヴィ合同会社

〒108-0023 東京都港区芝浦三丁目1番21号 msb Tamachi 田町ステーションタワーS https://www.abbvie.co.jp/

abbvie

抗ヒトIL-13モノクローナル抗体製剤 薬価基準収載

® 皮下注250mg

Ebglyss® Subcutaneous Injection Autoinjectors, Ebglyss® Subcutaneous Injection Syringes

生物由来製品 劇業 処方箋医薬品(注意-医部等の処方箋により使用すること) 最適使用推進ガイドライン対象品目

製造販売元〈文献請求先及び問い合わせ先〉

日本イーライリリー株式会社 〒651-0086 神戸市中央区機上通5丁目1番28号

日本イーライリリー医薬情報問合せ窓口 medical lilly.com/jp

効能又は効果、用法及び用量、 警告・禁忌を含む注意事項等 情報等については、電子添文を ご参照ください。

Lilly Answers リリーアンサーズ (医療関係者向け) 0120-360-605*1 受付時間 月曜日~金曜日 8:45~17:30*2

※ 1 適節料は割料できず。料帯電配からでもご利用いただけます。
 ※ DP電配からはフリーダイヤルをご利用できない場合があります。
 ※ 投資日および当社休日を除さます。

PP-LK-JP-1107 2025年5月作成

Japanese Society for Digital Medicine and Healthcare

第1回日本デジタル医学会年次学術大会

主催 一般社団法人日本デジタル医学会

後援 日本医師会 東京都医師会 港区医師会

大 会 長 黒木 春郎 医療法人社団嗣業の会理事長

こどもとおとなのクリニック パウルーム院長

プログラム委員長 井上 祥 横浜市立大学共創イノベーションセンター

株式会社 GENOVA 京都大学

実行委員長 磯部 陽 国際医療福祉大学臨床医学研究センター教授

プログラム委員会(五十音順)

阿久津 靖子·磯部 陽·井上 祥·黒木 春郎·鯉沼 裕二·高木 俊介·髙瀬 義昌・冨井 美子·中安 杏奈・ 野村 和至·藤田 卓仙·目々澤 肇·宮川 祥子

実行委員会(五十音順)

阿久津 靖子·石井 留雄·磯部 陽·井上 祥·上田 悠理·木村 佳晶·黒木 春郎· 鯉沼 裕二·齊藤 光江· 酒井 三奈子·髙瀬 義昌·丹野 清美·平野 貴大· 福島 直央·三澤 園子·水島 洋·宮田 俊男·山下 和彦· 涌水 理恵·渡邊 祐介

Japanese Society for Digital Medicine and Healthcare

一般社団法人日本デジタル医学会

役 員

2025年10月1日現在

代表理事	磯 部 陽	国際医療福祉大学臨床医学研究センター/山王病院消化器外科
副代表理事	佐藤智太郎	国立病院機構名古屋医療センター医療情報管理部
副代表理事	髙瀬 義昌	医療法人社団至髙会たかせクリニック
副代表理事	宮田 俊男	早稲田大学理工学術院大学院先進理工学研究科
業務執行理事	石井 留雄	千葉大学環境健康フィールド科学センター
理 事	井 上 祥	横浜市立大学共創イノベーションセンター 株式会社 GENOVA 京都大学
理 事	上田 悠理	株式会社 Confie
理 事	岡崎 光洋	東京大学大学院薬学系研究科
理 事	木村 佳晶	合同会社アグリハート
理 事	黒木 春郎	医療法人社団嗣業の会
理 事	木暮 祐一	名桜大学人間健康学部健康情報学科
理 事	小嶋 高志	弁護士法人フェアネス法律事務所
理 事	酒井三奈子	明治安田生命保険相互会社
理 事	詫摩 直也	株式会社 Open Health Initiative
理 事	平野 貴大	社会福祉法人ニライカナイ
理 事	福島 直央	ファストドクター株式会社
理 事	水島洋	東京都立健康長寿医療センター
監 事	龍湖 康雄	龍湖事務所
特任理事	阿久津 靖子	千葉大学医学部付属病院患者支援部
特任理事	渡邊 祐介	北海道大学病院 医療・ヘルスサイエンス研究開発機構
顧問	遠藤 直哉	弁護士法人フェアネス法律事務所
顧問	香取 照幸	兵庫県立大学大学院社会科学研究科
顧問	武久 洋三	日本慢性期医療協会
顧問	中 村 肇	淀川キリスト教病院老人保健施設
顧問	三友 仁志	早稲田大学大学院アジア太平洋研究科
顧問	甕 昭男	YRP 研究開発推進協会

© 2025 Japanese Society for Digital Medicine and Healthcare

第1回日本デジタル医学会年次学術大会 抄録集

発行 2025年10月18日

発 行 一般社団法人日本デジタル医学会

代表理事 磯部 陽

編 集 第1回日本デジタル医学会年次学術大会事務局

一般社団法人日本デジタル医学会

〒100-0013 東京都千代田区霞が関 1-4-1 日土地ビル

弁護士法人フェアネス法律事務所内

office@jsdmhc.jp

https://jsdmhc.jp/
